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Cancer progression remains a significant clinical challenge. Phenotypic
adaptation by tumour cells results in disease heterogeneity, which drives
treatment resistance and immune escape. T‑cell immunotherapy, while
effective at treating some cancer subtypes, can also fail due to limits on
tumour immunogenicity or T‑cell recognition. For example, one potential
contributor to immune escape involves the density and alignment of the
extracellular matrix (ECM) surrounding tumours, also known as tumour‑
associated collagen signature (TACS). However, the specific mechanisms by
which aligned fibres contribute to decreased patient survival rates have not
yet been decoupled. Here, we developed EVO‑ACT (EVOlutionary agent‑
based cancer T‑cell interaction), a two‑dimensional agent‑based modelling
framework designed to investigate how different TACS architectures impact
tumour evolution and dynamic interactions with CD8+ T cells. Our results
highlight that TACS‑driven modulation of T‑cell dynamics, combined
with phenotypic adaptation, such as epithelial‑to‑mesenchymal transition,
underlies differences in tumour immunogenicity and the application of
our model can successfully recapitulate clinically observed breast cancer
survival trends.

1. Introduction
The immune system plays a central role in the adaptive response against tu‑
mour progression, wherein cytotoxic T cells (CD8+ T cells), hereafter referred
to as T cells, attempt to engage with and eliminate the cancer population. This
interaction results in immunoediting of tumour populations that can either lead
to tumour escape, elimination or a sustained equilibrium period [1–5]. Prior
experimental and theoretical work has been directed at understanding how
repeated tumour–immune interactions affect the ultimate dynamics of cancer
progression and escape [6–10]. These earlier models have described how clon‑
ally heterogeneous cancer populations evolve under adaptive immune selective
pressures.

It is now appreciated that the adaptive immune system can capably clear
cancer in some cases, while in others, tumour‑immune escape occurs. The im‑
mune microenvironment plays an important and multifaceted role in this pro‑
cess. One unanswered question relates to the role of ECM (extracellular matrix)
organization and its effects on tumour‑immune recognition. In solid malignan‑
cies, ECM geometry in the microenvironment has been associated with disease
stage [11,12] and observed T‑cell infiltration [13,14]. Specifically, empirically ob‑
served ECM topologies are frequently categorized based on fibre arrangement:
random fibres (TACS1), circumferentially aligned fibres (TACS2) and radially
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Figure 1. Tumour progression schematics under different TACS and T-cell infiltration scenarios. EVO-ACT considers tumours initially in TACS1, which then progress to
TACS2 and TACS3. Under different immune infiltration conditions [15], interactions between T cells and cancer cells can give rise to tumour elimination (row 1) or escape
(rows 2−4). Tumour heterogeneity arises through stochastic adaptation, resulting in variable TAA presentations. Different tumour-cell colours represent potential tumour
heterogeneity.

arranged fibres (TACS3), illustrated in figure 1 [12]. Researchers have further refined this classification and identified up to eight
distinct TACS subtypes, which build upon the foundational TACS1‑3 framework by capturing more nuanced variations in fibre
organization [16]. Additionally, different TACS can coexist within the same tumour and are not restricted to specific cancer stages
or patients [17–19]. In breast cancer, TACS3 often emerges after TACS1 transitions to TACS2 [18]. Despite the fact that a clear neg‑
ative correlation between TACS3 and breast cancer patient survival has been established [18], the specific roles and extent of TACS
in sculpting T‑cell‑driven cancer evolution remain uncharacterized. Mechanisms underlying how TACS influences cell movement
are still not fully elucidated, with divergent opinions on the precise details involving how and to what extent the ECM mediates
immune cell infiltration [13,14,20–22]. At present, we lack a physical model relating the impact of TACS on the spatial coevolution
between an adaptive immune repertoire and a heterogeneous population of evading cancer cells.

To address these complexities, we developed EVO‑ACT (EVOlutionary agent‑based cancer T‑cell interaction), a spatially ex‑
plicit agent‑based modelling framework that captures the dynamic interaction between tumour and T cells in different TACS
signatures. Unlike existing models that focus on isolated processes, EVO‑ACT integrates tumour–immune–ECM dynamics into
a unified system, enabling spatiotemporal analysis of how TACS structures and phenotypic adaptation shape T‑cell infiltration,
immunoediting and immune escape. This represents, to our knowledge, the first stochastic agent‑based model of spatially de‑
pendent tumour–immune interactions based on T‑cell recognition of tumour antigens. Our modelling framework is capable of
generating dynamical insights into how local ECM remodelling and antigen‑driven T‑cell behaviour jointly influence immune
surveillance and tumour evolution.

Our results suggest that the degree of cancer immunoediting is dependent on TACS‑specific differences in T‑cell infiltration and
moving efficiency, and that TACS have a greater impact on chemokine‑directed T‑cell infiltration than they do on tumour‑immune
evasion. When applied to predict differences in TACS3‑dependent disease progression, we find that our modelling framework
requires the inclusion of additional phenotypic adaptation mechanisms, such as the epithelial‑to‑mesenchymal transition (EMT),
in order to successfully recapitulate clinically observed cancer survival trends. Our model predicts that immunogenicity differ‑
ences through decreased tumour‑associated antigen (TAA) availability and immune checkpoint upregulation synergize to result
in immune escape, which successfully predicts overall survival trends in breast cancer [23,24]. The EVO‑ACT framework provides
a detailed dynamical description of the role of TACS in tumour evolution when subject to adaptive immune selective pressure. We
anticipate that its use can be more broadly applied to understand cancer evolutionary patterns and treatment success or failure in
specific cases where observed TACS architecture and phenotypic status are previously defined.
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2. Model development
To investigate the dynamic interplay between tumour cells, T cells and the ECM, we developed EVO‑ACT, a spatially explicit
agent‑based model. EVO‑ACT simulates tumour growth, immune infiltration and ECM remodelling over time, allowing for
mechanistic exploration of how structural and phenotypic heterogeneity influences cancer–immune interactions and tumour elim‑
ination or escape. Below, we briefly outline the modelling approaches used to represent tumour‑cell behaviour, T‑cell dynamics
and ECM structure. We refer readers to §5 for full details.

2.1. Cancer cells
Tomodel cancer cells, we assumed that a small collection (n∼ 4000) corresponding to a total tumour diameter of 0.1 cm of tumour
precursors reside at the centre of a circular region of interest, from which active tumour cells may extravasate outward, invade
and divide [25]. These tumour cells, together with T cells, comprise agents in our model. We assumed that cancer cells may di‑
vide and migrate at per‑cell rates of 𝜆 and 𝛼t, respectively. Cancer cells are also assumed to possess an initial collection of shared
TAAs displayed on their surface. For foundational understanding, we generated TAAs randomly according to a Poisson (𝜈 = 100)
distribution. Each cell may also undergo phenotypic adaptation with a rate of 𝜇= 5 × 10−4 per cell division. We assumed that
each adaptation event results in an equal likelihood of the addition or removal of a Poisson number of TAAs with a mean of 10,
and that each TAA addition or removal increases or decreases the division rate by 1% of 𝜆 with equal probability. Evolution in
this model results in distinct cancer populations, or ‘clones’, which are distinguished only based on their expression of TAAs and
may occur through genetic or epigenetic adaptation mechanisms. We accounted for the ‘contact guidance’ theory of migration by
assuming that each cancer cell randomly selects a fibre within five cell diameters (75 μm) along which to migrate [12], and equal
probabilities are given to both fibre directions. We also considered variability in the starting division rates and TAA abundances.

In simulations that incorporate EMT, we assume that EMT occurs once a certain total tumour burden is achieved. Upon reach‑
ing this threshold, all dividing cells at the tumour periphery are assumed to undergo EMT, which was modelled by a decreased
division rate (fivefold reduction), increased migration rate (fivefold increase), and decreased immunogenicity (reduction of TAAs
by a Poisson‑distributed random variable with mean of 15) to match previous experimental observations [24,26].

2.2. T cells
T cells comprise the other active agents in our modelling framework, and we modelled their dynamics by starting with an initial
population of (NT = 5000) T cells located at the boundary of the region of interest [27]. These T cells migrate inward at a determin‑
istic rate of 𝛼T. Their directed migration is influenced by the surrounding extrinsic microenvironment, which includes collagen
fibre alignment and chemotaxis [12,28]. Tomodel differential antigen specificities of distinct T‑cell clones, we assumed that distinct
T‑cell receptors (TCR) exist (Q≤ 5000), each having the capability to recognize various antigen signatures. In this model, T‑cell
diversity is characterized by the absolute number of distinct antigen specificities the T‑cell population can cover, which correlates
directly with the number of TAA‑specific clones (q). T‑cell recognition is thus a function of both Q and q. To model recognition,
each migrating T cell surveys the vicinity (45 μm). Upon encountering at least one recognizable TAA, T cells eliminate the tumour
cell and subsequently divide. To account for lineage‑specific T‑cell contractions in the absence of antigen signalling, daughter T
cells possess a finite survival window, after which they are removed if they cannot recognize and eliminate another cancer cell
(see electronic supplementary material, figure S1, for full details). While we do not explicitly includememory T cells in our model,
our assumptions on T‑cell dynamics maintain a small population of effector T‑cell clones that have previously recognized TAAs.

We utilized a Gillespie simulation‑based approach to model cancer and T‑cell dynamics.

2.3. Extracellular matrix topology
Wemodelled ECMfibres situated outside the tumour corewith normally distributed lengths (mean 𝜇= 10 μm; variance 𝜎2 = 𝜇∕10)
[29]. To reflect common patterns observed in some solid tumours, including breast tumour [18,30,31], fibre density was assumed
to decrease radially outward from the tumour centre and initially all fibres are randomly oriented, corresponding to TACS1 [32].
To account for tumour‑driven TACS remodelling [12], we allowed for each dividing tumour cell at the periphery to alter the fibre
direction from TACS1 to TACS2within a neighbourhood of the cell (75 μm). Based on previous findings, tumour cells can remodel
fibres into a radial pattern within a fivefold neighbourhood relative to tumour radius [33]. For simplicity, based on the size of the
central tumour, we assumed that dividing cells at the tumour boundary will collectively remodel fibres within approximately 0.18
cm into TACS3. We also studied the role of heterogeneous fibre alignment by adjusting the variance of fibre orientation in each of
TACS2 and TACS3.

We refer the reader to electronic supplementary material, figure S2, for the initial spatial distribution of tumour, T cells and
fibres in our model and §5 for full model details.
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Figure 2. Spatial heterogeneity obtained through cancer evolutionary progression. (A) The spatial distribution of cancer clones is illustrated following progression to
approximately 0.5 cmdiameter (corresponding to approx. 110 000 tumour cells). Grey cells represent daughter cells arising from the founder clone, and additional colours
distinguish subsequent clones that harbour distinct antigen expression patterns. (B) A representative fish plot indicating the frequency of each antigenic clone, where
the brown represents the initial clone. The vertical axis represents the frequency of each tumour clone and the horizontal axis represents the generation.

3. Results

3.1. Cancer evolution generates tumour-associated collagen signature-specific spatial signatures in the absence of
immune selective pressure

In ourmodel, tumour populations grow and acquire alterations that enhance their division rate, and also affect their antigenic bur‑
den. In the absence of T‑cell recognition, cancer cells exhibited evolutionary trajectories comprised of outward growth and clones
with increased fitness through enhancements in their growth rates are positively selected. Figure 2A represents one stochastic
realization of this process for a single tumour population that divides until reaching a diameter of approximately 0.5 cm. Our
results capture the spatial variability in tumour heterogeneity and are in qualitative agreement with prior models in the regime
of tumour growth and invasion into neighbouring tissue (figure 2B) [34].

Given the well‑established clinical relevance of TACS [11,12,16,18,35,36], we next aimed to identify how TACS impacts can‑
cer patient survival or tumour elimination and escape. To investigate this, we first explored how TACS influences the encounter
between tumours and T cells. Based on the ‘contact guidance’ theory [37], we hypothesized that TACS affects the spatial distribu‑
tion and migration of cells. To test this, we simulated an initially small collection of tumour cells dividing within the three types
of TACS in the absence of immune pressure, with TACS2 and TACS3 being perfectly aligned, alignment variance 𝜎= 0 for each
orientation. For each TACS architecture, a distinct pattern of tumour spatial distribution emerged: tumour cells are randomly
packed in TACS1, they are tightly encircled in TACS2 and radially arranged in TACS3 (figure 3A). These patterns also manifest
in corresponding random (TACS1), circumfrential (TACS2) and radial (TACS3) spatial distributions of tumour clones (figure 3A).
Subsequent analysis of single‑cell cancer migration trajectories also revealed differences in their motion, with a contact‑guided
random‑walk pattern in TACS1, an outward ‘zig‑zag’ motion in TACS2 and an ‘outward radiating’ motion in TACS3. Together,
these results highlight how distinct TACS can significantly influence cancer cell migration and the subsequent spatial heterogene‑
ity observed across otherwise identical underlying tumour evolutionary processes. We postulated that such differences may be
relevant for immune recognition since, for example, the surface area of the tumour boundary in TACS3 is substantially larger than
in TACS2 with fewer subclones protected in the tumour interior (electronic supplementary material, figure S3).

3.2. Tumour-associated collagen signature generates distinct patterns of cell migration and consequent cancer
immunoediting

3.2.1. Tumour-associated collagen signature determines cancer and T-cell migration efficiencies

To quantify the role of TACS in cancer and T‑cell migration, we next tracked migration by simulating (Nt = 103) tumour cells un‑
dergoing contact‑guided migration along ECM fibres and (NT = 103) T cells undergoing directed migration towards a chemokine
signal over a fixed time period. In each case, we maintained perfect alignment of TACS2 and TACS3 (alignment variance 𝜎 = 0)
for comparison purposes. Our simulations predict that migration efficiencies in our model are maximal in TACS3, intermediate
in TACS1 and minimal in TACS2 for both T cells and tumour cells (figure 3B,C). These findings are consistent with the fact that
radially oriented TACS3 fibres direct T‑cell movement to the primary tumour mass, while TACS2 results in circumferential move‑
ment that reduces the overall migration rate observed in randomly oriented TACS1 fibres. Despite similar trends in the relative
cancer and immune cell movements for each TACS, these differences were substantially more pronounced for T cells than for
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Figure 3. TACS influences spatial distribution, migration direction and efficiency of both tumour cells and T cells, with chemical attractant amplifying TACS impact on
T-cell infiltration efficiency. (A) Tumour spatial distribution (𝜆= 0.1, 𝛼t = 0.01, 𝛼T = 0), antigenic clonal variant spatial distribution (𝜆= 0.1, 𝛼t = 0.01, 𝛼T = 0)
and single-cell migration trajectories (𝜆= 0,𝛼t = 0.1,𝛼T = 0) in TACS1−3. In the single tumour-cell migration trajectory, the∆t values in TACS1-3 are 0.33, 0.75 and
0.15, respectively. (B) Average tumour invasion distance (Nt = 103 tumour cells) across TACS1 to TACS3 within a fixed time frame. TACS2 and TACS3 are perfectly aligned
(alignment variance 𝜎 = 0 for each orientation). ****p < 0.0001. 𝜆= 0, 𝛼t = 0.1, 𝛼T = 0. (C) Average T-cell infiltration distance (NT = 103 T cells) across TACS1 to
TACS3 within the consistent time frame depicted in (B) TACS2 and TACS3 are perfectly aligned (alignment variance𝜎=0 for each orientation)). ****p<0.0001.𝜆= 0,
𝛼t = 0,𝛼T = 0.1 (D) Normalized T-cell infiltration efficiency in TACS1-3 with varying alignment region thickness and alignment variance. Wemeasured the time taken
forNT = 500 T cells to infiltrate from the boundary of the region of interest to the boundary of the central tumour circle under varying thicknesses of the alignment region
and varying alignment variances of TACS2 and TACS3. This timewas normalized against the time spent in TACS1. The semi-transparent grey plane in the graph represents
the baseline or T-cell infiltration efficiency in TACS1. The left side of this plane represents the infiltration efficiency of T cells in TACS2, with TACS2 features becoming
more pronounced as one moves further to the left. Conversely, the right side of this plane represents the infiltration efficiency of T cells in TACS3, with TACS3 features
becoming more pronounced as one moves further to the right. The y-axis represents the thickness of the alignment region, with thicker regions positioned toward the
inner side.𝜆= 0,𝛼t = 0,𝛼T = 0.1. (E) Normalized T-cell infiltration efficiency in TACS1-3with varying chemokine gradients and alignment variances𝜎. We replicated
the experiments in (D), with a default aligned region thickness of 0.5mm, and replaced the regional thickness of aligned fibrewith chemokine gradients.𝜆= 0,𝛼t = 0,
𝛼T = 0.1.

cancer cells (figure 3B,C). These results suggest that the benefit to migration of TACS3 significantly favours T‑cell infiltration over
cancer escape.

To better understand the role of TACS fibres and cell signalling on T‑cell migration, we performed additional simulations
tracking the migration efficiency of (NT = 500) T cells from the region of interest boundary to the tumour centre boundary un‑
der TACS1–3. We also independently varied the regional thickness of aligned fibres and the strength of the chemokine gradient
guiding T‑cell migration. Migration efficiency was taken to be the inverse of mean migration time, and each result is normalized
to the mean values obtained for TACS1. Our results (figure 3D,E) illustrate the spectrum on which highly versus loosely aligned
TACS influence T‑cell migration. Larger regions of TACS fibres amplify the observed TACS‑specific migration differences, and
a larger chemokine gradient consistently enhances infiltration efficiency across all TACS conditions. Moreover, our results show
that TACS2 does not constitute an absolute barrier to T‑cell infiltration; rather, it diminishes the efficiency of T‑cell infiltration. The
degree to which this efficiency is diminished relies on factors such as the degree of alignment and thickness of the TACS2 region.
Our findings support previous work showing that clinically observed patterns of T‑cell exclusion are consistent with differences
in T‑cell chemical signalling rather than a physical barrier to T‑cell infiltration [21].

We also conducted a sensitivity analysis of tumour migration and T‑cell infiltration efficiency (electronic supplementary ma‑
terial, figure S4). The results indicate that the migration rate of tumour cells has the greatest impact on migration efficiency. The
alignment of the ECM, or various TACS, has a relatively minor effect on tumour migration efficiency. Variations in ECM density
across different TACS areas show differential impacts. The density of the ECM has a negligible impact on tumours in TACS1 and
TACS3; however, for tumours in TACS2, the combined effect of TACS2 and high‑ECM density significantly impedes tumour‑
cell migration. Regarding T‑cell infiltration efficiency, the migration rate shows a substantial effect and the impact of chemokine
gradients in TACS3 is notably more influential compared with other TACS. Different TACS have a more pronounced impact on
T‑cell infiltration than on tumour‑cell migration. Similarly, the ECM density also affects T‑cell infiltration, with varying effects
in different TACS areas. Our findings suggest that reducing the ECM density in the TACS2 region shows the most significant
enhancement in T‑cell infiltration efficiency.

3.2.2. Tumour-associated collagen signature-specific tumour spatial heterogeneity and T-cell infiltration together generate variety in cancer
immunoediting

We next sought to understand how TACS‑dependent spatial distributions in cancer clones and variable T‑cell infiltration efficien‑
cies together affect tumour elimination and escape. Given that T‑cell infiltration is often correlated with greater patient overall
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Figure 4. TACS impacts spatial heterogeneity and infiltration levels of T cells, consequently influencing immunoediting. TACS3 promotesmore efficient T-cell infiltration.
(A,C,E,G) Illustrative examples of tumour–T-cell interaction snapshots and associated T-cell density heatmaps within TACS1→TACS2 (A,C) and TACS1→TACS2→TACS3
(E,G) conditions at t1 and t2 time points. (B,D,F,H) The radial distribution of T-cell density from the tumour centre to the boundary of the region of interest is depicted.
The red dashed line represents the boundary of the tumour core in the above two conditions, Q= 210, q= 10. (I,L,O) Tumour burden and T-cell density were quantified
in the tumour core (Tc) and margin (Tm), and Tc:Tm. In immune exclusion and non-recognizing T-cell inflammation conditions, Q= 210, q= 0. In recognizing T-cell in-
flammation condition, Q= 210, q= 10. (J,M,P) Snapshots of tumour and T-cell interactions in three T-cell infiltration conditions. T cells are represented as green dots.
The remaining colours denote tumour cells. (K,N,Q) The average antigen levels were analysed for each of the three conditions across 10 iterations. In each plot, initial
antigen levels (A0) partition the graph into red (antigen gain) and blue (antigen loss) segments. Higher y-values indicate higher antigenicity. The red dashed line in (Q)
marks the onset of widespread tumour killing or immunoediting by T cells. In all conditions,𝜆= 0.1,𝛼t = 0.02,𝛼T = 1.8.

survival across various tumour subtypes [38–40], we first quantified the extent of T‑cell infiltration in TACS environments by
comparing the spatial distribution of T‑cell density in the tumour core and tumour margin to capture different immune infiltra‑
tion patterns and assess how ECM architecture may influence immune accessibility. Since our model does not include other cell
types present in the tumour microenvironment, the tumour core is defined as the area enclosed by the current tumour bound‑
ary, while the tumour margin is immediately exterior to the boundary of the tumour core and extends outward by 250 μm [21].
Given that both TACS3‑positive and TACS3‑negative environments are commonly observed in clinical breast cancer [18], we per‑
formed stochastic simulations of tumour growth, T‑cell infiltration and eventual tumour–T‑cell interactions for TACS1→TACS2
(figure 4A–D) and TACS1→TACS2→TACS3 (figure 4E–H) conditions. We refer readers to §5 for details on TACS notations. In
each case, we calculated an average T‑cell density in the tumour core relative to the tumour margin to differentiate infiltrating
and non‑infiltrating T cells at the tumour boundary (indicated by the red dashed lines in figure 4B,D,F,H).
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We observed distinct profiles of T‑cell infiltration in TACS1→TACS2 (figure 4A–D) and TACS1→TACS2→TACS3 (figure 4E–H)
conditions. Heat maps depicting T‑cell densities indicate regions where active T‑cell recognition and concomitant expansion oc‑
curs (figure 4A,C,E,G). In particular, TACS1→TACS2→TACS3 environments are characterized by high T‑cell infiltration into the
tumour core relative to the tumourmargin. These findings contrast with TACS1→TACS2 environments, whichwere characterized
by low‑to‑intermediate levels of T‑cell infiltration (figure 4B,D,F,H). These trends were maintained in additional simulations that
assumed perfectly aligned TACS2 and TACS3 signatures (alignment variance 𝜎 = 0) (electronic supplementary material, figure
S5). The observation that enhanced infiltration and consequent T‑cell recognition occurs in a TACS3 environment is consistent
with the prior finding that TACS3 provides greater benefit to T‑cell mobility [41,42]. Moreover, reductions in T‑cell infiltration in
TACS2 still permit T‑cell recognition and do not function as an absolute barrier to recognition, even in perfectly circumscribed
tumours (electronic supplementary material, figure S5). Finally, greater TACS2 thickness enhances the inhibitory capacity on T
cells, thereby promoting tumour evasion (electronic supplementary material, figure S6).

Given these differences in T‑cell infiltration, we next sought to observe how TACS‑specific effects on cell migration and tu‑
mour heterogeneity together impact immunogenicity during tumour progression. We performed additional simulations to assess
TACS1→TACS2 T‑cell infiltration in greater detail. We first modelled an immune‑excluded phenotype by confining 95% of T cells
to the tumour margin. These simulations were compared against cases that allowed for T‑cell infiltration. In all conditions, we
tracked T‑cell infiltration into the tumour core (Tc), tumour margin (Tm) and the ratio Tc ∶ Tm (figure 4I,L,O). We subsequently
repeated 10 replicates for each condition, and average tumour antigenic burden was calculated over time in each case (figure
4K,M,Q). TACS1→TACS2 cases resulted in both immune‑excluded and immune‑infiltrated tumours (figure 4I–Q), and only a
subset of cases with T‑cell infiltration exhibited significant T‑cell expansions, which we distinguish as ‘non‑recognizing’ (figure
4L–N) or ‘recognizing’ (figure 4O–Q). In both immune‑excluded and infiltrated non‑recognizing cases, we observed a steadily
increasing average antigenic burden during cancer progression, which is comparable to empirically observed mutation accu‑
mulation rates (figure 4K,N) [43,44]. This behaviour contrasted with the infiltrated recognizing case, wherein TAA availability
notably declined over time and is consistent with strong immunoediting (figure 4O–Q). Our model predicts that active immune
pressure results in tumour clones that tend to become less immunogenic over time, suggestive of the strong selective pressure
operant during T‑cell infiltration and in agreement with previous findings [2,45]. Under T‑cell‑mediated predation, the temporal
dynamics of tumour progression and clonal evolution are presented in electronic supplementary material, figure S7. We further
simulated the progression of two tumour types with differing immunogenicity under the same TACS context, corresponding to
clinically observed progressively ‘hot’ and progressively ‘cold’ tumours (electronic supplementary material, figure S8) [46]. These
dynamics underscore that, in our model, T‑cell infiltration alone is insufficient to predict T‑cell response, with spatially dependent
T‑cell expansion and tumour immunogenicity being more indicative of effective recognition and tumour elimination (electronic
supplementary material, figure S9).

3.3. Tumor-associated collagen signature 3-associated phenotypic adaptation decreases predicted survival rates and
impairs the efficiency of checkpoint inhibitor therapy

3.3.1. Tumor-associated collagen signature 3-associated phenotypic changes are predicted to drive reductions in survival rates

Our previous results suggested that TACS3 in isolation confers an overall net benefit to immune recognition (figure 3C), an unex‑
pected result in light of the fact that survival rates in TACS1→TACS2→TACS3 conditions are generally lower than those observed
for TACS1→TACS2 conditions [18]. To investigate this further, we performed 50 stochastic simulations of tumour progression and
immune recognition in perfectly aligned TACS2 and TACS3 conditions, respectively, each characterized by varying TCR speci‑
ficity. In our model, a tumour size of approximately 0.5 cm (approx. 110 000 cells) was used as a threshold for local progression
beyond immune control, with recorded progression times. We initially kept all other parameters constant while only altering TCR
specificity (refer to §5 for full details). Despite exploring various parameter regimes (refer to §5 for full details), we consistently
found that the survival rate of TACS3 was higher than that of TACS2 (figure 5A). Given that TACS3 typically occurs in the late
stages of breast cancer [18], we reasoned that TACS3 cases may be accompanied by additional cancer cell phenotypic changes
that are known to occur as the disease progresses [47]. One of the most well‑established phenotypic changes in many epithelial
cancers, including breast cancer, is the occurrence of the EMT [24,26,48]. EMT is modelled by enhanced tumour migratory capac‑
ity, reduced proliferative ability and decreased immunogenicity. Introducing EMT separately in TACS2 and TACS3, we observed
higher overall survival rates in TACS3 compared with TACS2 (figure 5B; electronic supplementary material, figure S10A). Our
simulations that include EMT only after TACS2–TACS3 progression most closely match clinically observed outcomes (figure 5C)
[18], consistent with the fact that TACS3 and EMT are both likely to occur in later disease. Modelling TACS and EMT in this
coupled way is also consistent with experimental evidence demonstrating that ECM influences EMT regulation, and reciprocally,
EMT induces changes in ECM remodelling [47,49–52]. Moreover, by considering population‑level variability in TCR specificity
(see §5 for full details) for large‑scale simulations of survival, we were able to identify parameters which more accurately reflect
observed survival trends in TACS (electronic supplementary material, figure S11).

To better understand the respective impacts of TACS3 and EMT on disease progression, we varied the occurrence of EMT and
the timing of TACS3 initiation. We first modified the timing of TACS3 occurrence, which from our earlier findings was expected
to prolong T‑cell residence times and infiltration efficiency (figure 6D,E). We observed significant reductions in tumour burden
with early TACS3, along with an earlier occurrence of substantial tumour killing (figure 6A,B). While late TACS3 exhibits a higher
peak in tumour burden, resulting in greater T‑cell expansion compared with early TACS3 (figure 6B), the earlier onset of tumour
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Figure 5. The concurrence of TACS3 and tumour adaptive changes is a significant factor contributing to the lower survival rates in TACS3 cases. The survival probability
from 50 repeated experiments with varying TCR diversity in TACS2/EMT− (median survival time = 1.04), TACS3/EMT− (median survival time = 2.578) (A), TACS2/EMT+
(median survival time = 0.423), TACS3/EMT+ (median survival time = 0.656) (B), TACS2/EMT−, TACS3/EMT+ (C). In all simulations, we assumed that clinical immune
escape occurs when the tumour size reaches approximately 0.5 cm. p≤0.001. The red box marks the simulation condition (EMT after TACS2–TACS3 transition) that best
matches observed clinical survival trends. To simplify, we reduced the region of interest size from a radius of 0.4 cm to 0.25 cm, meaning that the initial distance of T cells
from the tumour is closer.𝜆= 0.4,𝛼t = 0.01,𝛼T = 1.6,𝜇= 8 × 10−4, Q= 500−2500, q= 100−500.

killing in early TACS3 limits the time available for tumour evolution. These observations suggest that TACS3: (i) facilitates en‑
hanced T‑cell infiltration, which is consistent with our previous findings, (ii) curtails the window for tumour evolution, and (iii)
partially alleviates challenges associated with tumour eradication. Hence, by controlling the timing of TACS3 emergence, we did
not observe significant challenges to the immune system. Even when TACS3 appeared later, the efficient infiltration facilitated by
TACS3 could assist T cells in encountering cognate antigens (figure 6D).

Given that TACS3 alone cannot fully explain the clinically observed survival in breast cancer (figure 5A), we next assessed
the impact of EMT occurring alongside TACS3. We identified three differences in EMT− (figure 6D,E) versus EMT+ (figure 6F,G)
cases. First, tumour burden is notably higher in EMT+ cases. Second, the time at which tumour burden begins to significantly
decrease is later in EMT+ cases. Third, there is a less dramatic decrease in tumour burden in EMT+ cases. These observations can
be explained by higher levels of TAA‑specific heterogeneity, reduced immunogenicity and enhanced migration in EMT+ cases, all
of which impair T‑cell killing. TACS3 enhances T‑cell infiltration relative to TACS2 cases (figure 6A–F), thereby leading to earlier
encounters between T cells and tumours and reductions in tumour burden (figure 6F–G). Collectively, these results suggest that
phenotypic adaptation occurring late in TACS3 poses significant challenges to the immune system and reduces cancer elimination
rates. From this, we conclude that the occurrence of TACS3 alone in our model cannot fully account for observed survival rates
among patients with breast cancer [18]. Factors conducive to tumour fitness and adaptability concurrent with TACS3, such as
EMT, are necessary to explain observed survival trends, and our model suggests that cancer phenotypic adaptive mechanisms
significantly contribute to diminished survival outcomes (electronic supplementary material, figure S10B–C). This further sub‑
stantiates our earlier hypothesis regarding the concurrence of EMT and TACS3. Under this assumption, we also compared the
tumour evolution trajectories between TACS1→TACS2 and TACS1→TACS2→TACS3 conditions with varying TCR recognition
abilities; representative results are shown in electronic supplementary material, figure S12.

3.3.2. Large-scale stochastic simulations predict tumour-associated collagen signature 2 to have greater reductions in overall survival with
immune checkpoint up-regulation, in addition to more effective responses to checkpoint blockade therapy

Given the impact of TACS and phenotypic adaptation on altered immunogenicity and subsequent expected cancer escape, along
with the ability of mesenchymal tumour cells to upregulate PD‑1 (programmed cell death protein‑1)/PD‑L1 (programmed death
ligand‑1) expression by modulating certain pathways [53], we further explored how TACS‑specific tumour evolution affects
responsiveness to PD‑1/PD‑L1 inhibition and its subsequent impact on simulated survival. We next considered an increase in
PD‑1/PD‑L1 levels at a fixed time point, which acts in our model to make T‑cell recognition of tumour cells more difficult by
requiring additional recognition capacity of tumour antigens to overcome the checkpoint. We then simulated the dynamics of
tumour–immune interactions using the calibrated in silico patients that previously resolved survival probabilities in TACS2 and
TACS3 (electronic supplementary material, figure S11).

In ourmodel, immune checkpoint upregulation raises the threshold for T‑cell recognition of TAA.While there aremultipleways
to account for this, we decided to allow cancer cells to become eliminated and recognized only if at least two TAAswere recognized
since this uniformly impairs all T‑cell recognition in the presence of immune checkpoint. Building on electronic supplementary
material, figure S11A, we introduced PD‑L1+ into TACS2 and TACS3, respectively (electronic supplementarymaterial, figure S13).
We found that (i) the introduction of PD‑L1 negatively affects the survival rate for TACS2more than for TACS3 (electronic supple‑
mentary material, figure S13A,B). (ii) Despite this, TACS3/EMT + consistently shows the lowest survival among all combinations
(electronic supplementary material, figure S13C–E). (iii) Specifically, in the TACS2/EMT‑/PD‑L1‑ and TACS3/EMT+/PD‑L1 + con‑
ditions, we obtained maximally resolved survival curves in large‑scale stochastic simulation (electronic supplementary material,
figure S13F). These results demonstrate that PD‑L1 status can further exacerbate the likelihood of tumour‑immune escape.

We next wanted to investigate the potential impact of TACS on checkpoint inhibitor responsiveness. We conducted 10 repli‑
cations each for TACS1→TACS2 and TACS1→TACS2→TACS3 conditions. In our model, introducing the inhibitor represents the
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Figure 6. Tumour and T-cell interaction dynamics in the presence or absence of TACS3 and EMT. (A) Tumour burden is depicted over time. The red dashed lines represent
the time at which T cells initiate large-scale tumour killing in each condition. (B) T-cell counts are depicted over time. (C) Clonal diversity index is depicted over time.
See §5 for further details on the clonal diversity index. To simplify visualization, conditions with TACS1→ TACS2 ECM alignment were labelled as ‘TACS3−’ while those
including all three patterns (TACS1→ TACS2→ TACS3) were labelled as ‘TACS3+’ in (A–C). (F–G) Snapshots of each condition at different times, respectively. T cells are
represented by green, while the remaining cells represent tumour cells, with different colours indicating distinct tumour clones. Among them, (D) TACS3 occurs without
EMT, and TACS3 occurs early. (E) TACS3 occurs without EMT, and TACS3 occurs late. (F) EMT occurs without TACS3. (G) TACS3 and EMT occur simultaneously. (H) Final
distribution of fibres in each condition. TACS1 fibres are marked with black, TACS2 fibres are marked with blue, and TACS3 fibres are marked with red. In all conditions,
𝜆= 0.1,𝛼t = 0.02,𝛼T = 1.8, Q= 210, q= 10.

restoration of TCR recognition capability to its pre‑elevated state, keeping all other parameters consistent. We then tracked the
population dynamics of both tumour burden andmean TAAavailability. Representative images are depicted in figure 7A,C. In our
repeated experiments, TACS1→TACS2/EMT− resulted in variable dynamics, including both tumour elimination and escape (figure
7A,B). Through an examination of the antigenic level of tumour clones, we found differing levels of immunoediting. Conversely,
we consistently observed tumour escape in the TACS1→TACS2→TACS3/EMT + setting, indicating either non‑responsiveness or
a lack of highly effective responses (figure 7C,D). Here, EMT reduces the effective number of TAAs available for T‑cell targeting.
The addition of PD‑L1 overexpression further exacerbates this effect, presenting a considerable obstacle to the immune response.
In the presence of a substantial tumour burden, even with the addition of inhibitors, our simulations predict that there is mini‑
mal, if any, enhancement in cancer cell recognition with such treatment. We further compared the proportions of proliferating T
cells before the application of PD‑L1 inhibition and found that a higher proportion of proliferating T cells correlates with lower
tumour burdens and favourable ultimate cancer elimination rates (figure 7E,F). This observation aligns with recent findings in
triple‑negative breast cancer of the importance of proliferative fractions of T cells as the second‑most significant predictor of im‑
mune checkpoint blockade response, following major histocompatibility complex I and II expression [54]. Taken together, our
results suggest that both PD‑L1 and TACS affect the likelihood of tumour‑immune escape, with PD‑L1 having a greater impact on
TACS1→TACS2/EMT− tumours compared with TACS1→TACS2→TACS3/EMT + tumours. Additionally, the timing of PD‑L1 in‑
hibitor use is crucial, with its effectiveness being greater when used early on in tumour progression prior to TACS3 and additional
phenotypic changes [55].

To validate our findings,we conducted a survival analysis on patientswith breast cancer from theCancerGenomeAtlas (TCGA)
database.We utilized E‑cadherin (CDH1) andVimentin (VIM) asmarkers to delineate epithelial (E) andmesenchymal (M) cohorts,
respectively [56]. Since TCGA lacks detailed information on TACS status directly, we assumed in these analyses that TACS2/EMT−
and TACS3/EMT+ occurred concomitantly as was most consistent with our prior results. We selected samples from patients who
were naive to checkpoint inhibitors. E andM gene signatures were obtained using 40 genes associated with each phenotypic state,
and the survival data of samples containing the highest E and M signatures were used for analysis (electronic supplementary
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Figure 7. TACS-specific tumour evolution affects checkpoint inhibitor efficiency. (A) Representative tumour burden dynamics and associated mean TAA counts in the
TACS1→TACS2/EMT− conditions are depicted using identical model parameters. The red and green dashed lines represent the time of PD-L1 elevation and the ad-
ministration of the PD−1/PD-L1 inhibitor, respectively. Three representative images are shown from left to right, illustrating three scenarios: (1) inhibitor responder,
where tumours are eliminated regardless of inhibitor administration; (2) inhibitor responder, where inhibitor administration leads to tumour elimination, while without
inhibitor, tumour escape occurs; (3) inhibitor non-responder, where tumours escape both with and without inhibitor administration. (B) In the TACS1→TACS2/EMT−
condition, the probability distributions of tumour elimination and escape after the addition of the inhibitor are depicted. (C) Under the same parameter regime, the
representative tumour burden dynamics and associated mean TAA counts in the TACS3/EMT+ conditions are depicted. The grey dashed line represents the time of EMT
occurrence. Two red dashed lines represent the time of PD-L1 elevation and the administration of the PD−1/PD-L1 inhibitor, respectively. In all three scenarios, tumours
all escape. (D) In the TACS1→TACS2→TACS3/EMT+ condition, the probability distributions of tumour elimination and escape after the addition of the inhibitor are
depicted. (E,F) In both aforementioned settings, the proportions of tumour and proliferating T cells at the pre-treatment time point are depicted. (G) The overall survival
probability of two cohorts, E with low-PDCD1 expression andMwith high-PDCD1 expression, in the TCGA BCA database were analysed. Refer to §5 for more details. In all
conditions,𝜆= 0.2,𝛼t = 0.01,𝛼T = 1.8, Q= 500, q= 100.

material, figure S14A,B; see §5 for full details) [57–59]. We compared survival differences between the two cohorts and although
general trends were in agreement with our model predictions, we found no statistical significance (electronic supplementary
material, figure S14C). We observed similar findings when considering up‑regulated versus down‑regulated PD‑1 expression
(encoded by PDCD1) independently (electronic supplementary material, figure S14D,E). However, when patients were simulta‑
neously stratified according to EMT and PDCD1 status, we identified a statistically significant reduction in overall survival for
patients with cancer cells having M/high PDCD1 signatures, relative to those with E/low‑PDCD1 signatures (figure 7G). These
findings are in agreement with our model predictions (electronic supplementary material, figure S14D,E). However, when pa‑
tients were simultaneously stratified according to EMT and PDCD1 status, we identified a statistically significant reduction in
overall survival for patients with cancer cells having M/high PDCD1 signatures, relative to those with E/low‑PDCD1 signatures
(figure 7G). These findings are in agreement with our model predictions (electronic supplementary material, figure S13F) and
offer a dynamical explanation for how phenotypic adaptation and immune checkpoint together can impair T‑cell recognition and
treatment outcomes in checkpoint inhibitor‑naive patients.

4. Discussion
In solid tumours, ECM topology is known to be an important feature of the tumour microenvironment that affects tumour pro‑
gression, metastasis and therapeutic resistance [60,61]. However, the precise way in which cancer growth and tumour–immune
coevolution are affected by this topology remains unclear. To begin to address this, we developed EVO‑ACTmodel, to explore the
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dynamic and spatial aspects of immune cell and tumour interaction as a function of TACS. We applied our model to gain quan‑
titative insights into several dynamic features of this complex process, including how TACS affects both tumour‑cell and T‑cell
migration efficiency. Our findings suggest that TACS exert a greater impact on chemokine‑driven T‑cell infiltration, and they do
not constitute an absolute barrier to T‑cell infiltration. Our findings predict that TACS‑specific T‑cell infiltration patterns influ‑
ence immunoediting, and TACS3, together with late‑stage phenotypic adaptations, such as EMT and elevated PD‑L1 expression,
collectively contribute to reduced predicted patient survival and decreased responsiveness to PD‑L1 inhibitors.

Our work identified the impact of TACS in cell migration direction, spatial distribution and quantified the cell invasion ef‑
ficiency in three common TACS, with TACS3 > TACS1 > TACS2. The highest migration efficiency observed in TACS3 offers
new insights into the enhanced cell migration observed in TACS3 compared with random fibre environments [41]. Additionally,
our findings suggest that TACS do not constitute an absolute barrier to cell invasion, which has been debated in recent years
[13,14,20,21]; rather, it influences cell invasion efficiency significantly. Ideally, with prolonged infiltration, sufficient T‑cell pen‑
etration may also be observed within TACS2 regions (figure 4A–D). Our model permits tumour cells to migrate along aligned
fibres without enforcing a preference for leaving the tumour bulk. As seen in figure 3A (second row), despite omitting other de‑
tails that would encourage tumour cell outward invasion, we still observe substantial variation in migration resulting purely from
different TACS3 configurations. Additionally, the variation in invasion efficiency induced by TACS differs between tumour cells
and T cells. Under the directed influence of chemotaxis, our model predicts that T‑cell migration is more affected by TACS than
tumour extravasation. These results suggest that the density of ECM exerts varying impacts on the migration of tumours and
T cells situated within different TACS (electronic supplementary material, figure S4). Reductions to ECM density in the TACS2
environment showed a potentially greater improvement in cell migration efficiency for both tumour and T cells compared with
those in a TACS1 or TACS3 environment. This suggests that TACS2 might be uniquely restrictive to cell movement, making it
a critical target for treatment modulation. Additionally, due to the influence of chemokine gradient, therapies targeting stromal
architecture could have a more pronounced effect on enhancing T‑cell infiltration than on tumour‑cell migration. Our analysis
indicates that T cells, which are highly responsive to chemokine cues, benefit more from reductions in ECM density, leverag‑
ing these gradients for improved navigation and infiltration within the tumour stroma. Prior work has underscored the growing
recognition of the importance of ECM geometry in influencing cell invasion and deepening our understanding of the elevated
invasion efficiency in aligned fibres [28,41,62,63]. Subsequent studies can build on this foundational understanding by evaluating
the therapeutic potential of selective targeting of ECM remodelling in specific tumour regions and to improve immune activity
within the tumour microenvironment.

Since TACS do not completely hinder T‑cell infiltration, our analysis focused on highlighting the heterogeneous T‑cell spatial
distributions in each TACS. Prior work has illustrated the importance of including chemokine attraction and antigen specificity
for generating observed T‑cell spatial distributions [39]. Our model’s population dynamics demonstrate that TACS also play a
significant additional role in generating observed T‑cell spatial distributions. Given the significant role of TACS in allocating spa‑
tial positions for tumour clones, we argue that the spatial distribution of T‑cell clones is also influenced by TACS, which in turn
influences the location of expanding T‑cell clones (electronic supplementary material, figure S9). An alternative theoretical ap‑
proach focused on T‑cell distributions in the tumour core, invasive margin and tumour stroma. Significant differences in T‑cell
distribution and function have been observed in these three distinct regions, with notable characteristics identified in each. T cells
within the tumour core exhibit tight interactions with tumour cells due to their close proximity [64]. The prolonged stimulation
from tumour antigens may be a contributing factor to T‑cell exhaustion, supported by recent research demonstrating that chronic
tumour antigen/TCR stimulation reinforces epigenetic programmes associated with dysfunctional hallmarks, resulting in dys‑
functional T cells [39,65]. These results are consistent with prior findings that T‑cell dysfunction and exhaustion correspond to
higher expression of co‑stimulatory molecules, such as PD‑1, TIM‑3 and VISTA [66,67]. This phenomenon is comparable to our
model (electronic supplementary material, figure S9) in settings where T cells that have interacted with the tumour are assumed
to be exhausted, leading to the concentration of potentially exhausted T cells inside the tumour. In contrast, T cells in the invasive
border are believed to have higher density, enhanced functionality and weak expression of co‑inhibitor molecules compared with
those in the tumour core or stroma [66,68,69]. In our model, T cells migrate toward the tumour, at which point factors such as anti‑
gen specificity, inflammatory cytokines and distinct TACS lead to varying distributions of expanding T cells within the tumour.
However, we found that the majority of T‑cell clones are still predominantly located at the tumour margin.

Our results demonstrate that TACS modulate T‑cell infiltration efficiency, which in turn influences tumour evolution through
distinct levels of immunoediting. TACS‑specific changes in T‑cell infiltration, therefore, result in varying degrees of selective pres‑
sure on tumours. Under conditions of heightened T‑cell infiltration and recognition, potent negative selective pressure drives
surviving cancer cells to have reduced immunogenicity [2]. This heterogeneity of T‑cell infiltration and neoantigen‑derived im‑
munoediting has been observed in various cancers, such as lung cancer and breast cancer [2–4,21], which can be achieved through
loss of heterozygosity in human leukocyte antigens, depletion of expressed neoantigens, or decreased TAApresentation efficiency
[2,4]. Furthermore, studies indicate that the distribution of tumour mutation burden is heterogeneous, and tumours with hetero‑
geneous infiltration are more prone to manifesting a heterogeneous tumour mutation burden [2,34,70]. Our results corroborate
these findings (electronic supplementary material, figure S15), and our in silico approach can be used in further studies assessing
the role of TACS in inducing tumour mutation burden heterogeneity.

While we have shown that TACS may influence tumour evolution in a variety of ways, our results indicate that one potential
reason for the lower survival rates observed in TACS1→TACS2→TACS3 cancer patients is the concomitant occurrence of phe‑
notypic adaptation [18]. In particular, clinically observed survival trends in TACS1→TACS2→TACS3 and TACS1→TACS2 cases
in breast cancer were only explained in our modelling framework by incorporating additional phenotypic adaptation mecha‑
nisms, including EMT and increased PD‑L1 expression [18]. Our results suggest that TACS3 in isolation may not be the primary
driver of lower survival rates. The co‑occurrence of TACS3 with EMT provides one possible explanation wherein heterogeneous
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and invasive clones are facilitated by a TACS1→TACS2→TACS3 environment to simultaneously avoid immune recognition and
metastasize out of the primary tumour site [12,37,41,62,71,72]. Other relevant phenotypic adaptation mechanisms may also ac‑
tively affect these results, and such distinct mechanisms may occur and be of direct importance for distinct cancer subtypes.
Relevant mechanisms for metastatic disease are marked by higher growth rates and lower antigenicity compared with their an‑
cestral clones, making them more resistant to elimination [73]. Moreover, such cellular phenotypic alterations often manifest in
the late stages. Otherwise, if occurring early, such as during the TACS2 phase, our model results suggest that the rapid escalation
of tumour heterogeneity and the hindrance posed by TACS2 on T‑cell infiltration would expedite tumour evasion rapidly (figure
6F). Our finding that PD‑L1 has a variable impact on tumours in the TACS2 and TACS3 also supports this. Our results further indi‑
cate that this TACS‑specific tumour evolution trajectory also influences the efficacy of checkpoint inhibitors. The different degrees
of immunoediting caused by TACS affect the responsiveness of PD‑L1 inhibitors [54]. Our findings also indirectly suggest that
the earlier use of inhibitors may lead to better outcomes, underscoring the importance of early differentiation between inhibitor
responders and non‑responders.

Based on all the above explorations of the mechanistic influence of TACS on tumours and T cells, we also acknowledge that in
certain cancer types, such as breast cancer, different TACSmay coexist [18]. This coexistencemay lead to the simultaneous presence
of the effects discussed above or introduce additional spatial heterogeneity in both tumour and T cells due to the spatial hetero‑
geneity of TACS. Our model is capable of capturing these behaviours, making it more suitable for describing tumour‑immune
dynamics at the individual patient level. Our foundational model makes a number of assumptions. Obviously, a number of cell
types feature in the tumour microenvironment and affect T‑cell recognition, including cancer‑associated fibroblasts, myeloid‑
derived suppressor cells and regulatory T cells to name a few. This work develops a foundational model capable of linking T‑cell
recognition and antigen‑directed immune evasion to spatial ECM geometries, an important and necessary first step for creating
a more comprehensive framework capable of relating additional features. In our model, we assume that all cells at the tumour
boundary undergo EMT simultaneously upon reaching the EMT threshold. Also, we assume that the adaptation rates of all tu‑
mour clones are identical. However, in reality, different tumour clones may undergo EMT andmutation or adaptation at different
times and with different rates, potentially leading to larger variations in growth, migration and collective migration across dis‑
tinct intratumoural subpopulations, as well as differential TACS3 remodelling. Our model does not account for the presence of
exhausted T cells; T cells are either in an activated state or have died and are subsequently removed from the system. We ex‑
pect that in reality exhausted T cells that persist within the tumour core provide additional hindrance to T‑cell killing. It is also
likely that the pro‑ versus anti‑tumour characteristics of the immune microenvironment, which we did not model in detail here,
further determine the extent to which this exhaustion occurs. The presence of exhausted T cells and their occupation of space,
along with increasedmetabolic demands such as oxygen consumption, further exacerbate the difficulty of T‑cell killing in real‑life
situations compared with our model. We did not incorporate oxygen or nutrient gradients into the migration dynamics in this
study. However, we acknowledge that hypoxia and other chemotactic signalling cues are important factors influencing tumour‑
cell behaviour, spatial competition for resources and its interplaywith immune infiltration. Such effects as they relate tomodifying
TACS‑specific distribution of cell spatial arrangements is a relevant next step and the subject of follow‑up work. Third, our frame‑
work models tumour growth and tumour–immune interactions in a two‑dimensional space, whereas real tumour populations
develop in three dimensions. Our analysis considered idealized TACS2 and TACS3 collagen arrangements for simulations when
in reality a number of variable and overlapping topologies likely exist. The incorporation of patient‑specific ECM orientation is
an important next step and the focus of future research efforts. Finally, the current model only considers the interaction between
tumour and T cells, yet many other features in the tumour microenvironment affect T‑cell recognition, including dendritic cells,
tumour‑associated macrophages and metabolic and chemical signatures. Nonetheless, our foundational model is able to provide
a population dynamical explanation for a variety of relevant characteristics of the tumour–immune interaction.

Taken together, our results quantify the impact of ECM architecture on the tumour–immune interaction, and our modelling
approach represents a novel mathematical framework to incorporate collagen‑specific information into a description of tumour
and immune coevolution. We also speculate that TACS may affect all elements in the tumour microenvironment reliant on fibre
movement or requiring ECM penetration, potentially influencing tumour evolution or treatment outcomes. Hence, our find‑
ings also indirectly affirm the importance and necessity of adopting stroma‑modifying treatments in clinical practice. Moreover,
since ECM architecture does not exist independently, further research is required to investigate the collective effects of various
TACS byproducts, such as angiogenesis, spatial distribution, interactions of different cells and varyingmicroenvironments, on the
tumour–immune interaction.

5. Methods

5.1. Initial conditions and model structure
All the simulations are performed using the EVO‑ACT framework developed in this study. The implemented program utilizes
Gillespie’s simulation algorithm to model stochastic events for two agents: tumour and T cells. Tumour‑cell events include inva‑
sion, division and migration, each governed by rates 𝛾, 𝜆, 𝛼t, respectively. Successfully divided cells undergo adaptation based
on the adaptation rate 𝜇 per cell division. Initially, tumour cells are assumed homogeneous. T cells only performmovement, with
a rate 𝛼T. To improve computational efficiency and focus our analysis on the invasive behaviour of tumour cells, we defined a
central circular region (with a radius of r) within the region of interest (with a radius of R), where tumour cells (n∼ 4000) are ini‑
tialized but not individually tracked. Only cells that migrate beyond this central core are explicitlymodelled as agents. This design
allows us to concentrate on the dynamics of tumour invasion, immune evasion and phenotypic evolution in the tumour−stroma
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interface, while maintaining reasonable computational complexity. We refer readers to electronic supplementary material, figure
S16, for simulations comparing cases with and without a predefined central tumour region. Initially, we assume that 200 tumour
cells have invaded the central mass. T cells (NT = 5000) are initially positioned at the region of interest boundary and commence
infiltration towards the tumour, as illustrated in electronic supplementary material, figure S2. Additionally, in the current version
of our model, time is represented in a non‑dimensional form. This approach allows us to explore the relative dynamics between
key biological processes without assuming a fixed absolute timescale. As the Gillespie algorithm inherently simulates stochastic
time intervals between events, the actual time step size is dynamically determined based on the total event propensities at each
simulation step. Some important parameters are listed in electronic supplementary material, table S1.

5.2. Tumour-associated collagen signature generation and remodelling
Collagen fibres occupy the annular space between the central tumour and the surrounding region of interest. Fibre density is im‑
posed along a linear gradient maximal at the tumour boundary [12]. The lengths of these fibres follow a normal distribution (mean
𝜇= 10 μm; variance 𝜎2 = 𝜇∕10). We remark that fibre length may vary across different tumour types and regions within the tu‑
mour. In this study, we used a previously reported general fibre length observed in tumour environments as the mean value, and
generated a distribution of fibre lengths [29]. Initially, all fibres are randomly packed, and their directions are normally distributed,
forming TACS1. Remodelling is accounted for by allowing cancer cells at the tumour boundary to change the fibre orientation.
With each tumour‑cell division, fibres within a radius of 75 μm are remodelled into perfectly aligned TACS2. The remodelled
fibres will orient perpendicular to the line linking the dividing cell’s centre and the centre of the fibre undergoing remodelling.
During EMT concurrent with TACS3, cells on the tumour periphery remodel fibres within a radius of approximately 0.18 cm into
perfectly aligned TACS3. This remodelling is based on previous findings suggesting that tumours can alter fibres within a range
of five times the original tumour sphere diameter into TACS3 [33]. We also assume that once fibres are remodelled into TACS3,
they cannot revert to TACS2. In our model, TACS1, TACS2 and TACS3 represent predefined static ECM environments with de‑
creasing levels of fibre alignment from the tumour core outward. To simulate ECM evolution during tumour progression [12],
we also constructed dynamic environments composed of sequential transitions: TACS1→TACS2 and TACS1→TACS2→TACS3.
These correspond to clinically observed TACS3‑negative and TACS3‑positive conditions, respectively [18].

5.3. Tumour division
We consider population dynamics for individual clones in the population. Specifically, when tumour division occurs, we first cal‑
culate the total rate of division for each tumour clone based on its size and division rate. Subsequently, we uniformly select a cell
at random for division from any tumour clone according to its total division rate, ensuring that the chosen position for division
does not overlap with any existing tumour cell. During each division time window, we allow a maximum of 100 cells to attempt
division, with each cell having up to 200 attempts to select a division position. Upon successful division, the newly divided cell
remodels fibres within a range of 75 μm from TACS1 to perfectly TACS2. Following division, each newly divided cell undergoes
adaptation based on the adaptation rate 𝜇.

5.4. Tumour adaptation
We assume that each tumour clone possesses a certain quantity of TAAs. For foundational understanding, this follows a Poisson
distribution with a mean of 100. Each tumour cell could diversify into different clones expressing distinct TAAs at the adaptation
rate 𝜇 [7,8]. Adapted cells randomly adjust the quantity of antigens, either increasing or decreasing. The variance in adjusted
antigen levels also follows a Poisson distribution with a mean of 10. The division rate of the adapted tumour clone will increase
or decrease by 1% of 𝜆 with each gain or loss of a TAA. Conversely, if no adaptation occurs, the new tumour cell retains the same
properties as the original tumour cell, including division rate, migration rate and antigen set.

5.5. Tumour migration
When tumour migration occurs, we compute the migration probability for each tumour clone, akin to calculating the division
probability. Subsequently, we randomly select a tumour clone based on its migration probability and then randomly choose a cell
from within that clone for migration. Each tumour cell randomly selects a fibre within a range of 75 μm as the migration direc‑
tion. There is an equal probability of choosing either the selected fibre’s direction or its opposite direction. The distance travelled
by the tumour cell is determined by the diffusion coefficient D and the current time window (∆t). Each step in the EVO‑ACT
model checks for issues related to spatial overlap to ensure that neither the migration path nor the destination of each tumour cell
overlaps with any other tumour cell.

5.6. Epithelial-to-mesenchymal transition
In our model, the initiation of EMT depends on the tumour burden. Once the cumulative tumour burden exceeds a specified
threshold, which varies in each condition, all dividable tumour cells undergo EMT simultaneously. EMT induces changes, in‑
cluding a fivefold decrease in tumour division rate 𝜆, a fivefold increase in migration rate 𝛼t and a reduction in tumour clone
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immunogenicity, resulting in a random decrease in tumour antigen quantity following a Poisson distribution with a mean of 15.
Moreover, all cells undergoing EMT will remodel fibres within a range of approximately 0.18 cm to TACS3.

5.7. T-cell migration, killing and expansion
To ensure sufficient immune pressure and enable meaningful analysis of tumour–immune spatial dynamics, the system was ini‑
tialized with a higher number of T cells than cancer cells. We assumed that all T cells had already arrived at the tumour site at the
start of the simulation, with no additional recruitment over time. When T‑cell migration occurs, we randomly select a T cell for
migration. The direction of T‑cell migration is influenced by both the gradient of tumour‑secreted chemokines and the orientation
of surrounding fibres within a range of 80 μm. The migration distance of the T cell depends on the intensity of the chemokine
gradient, the local fibre density and the duration of the current time window (∆t). We ensure that neither the migration path nor
the destination of the T cell overlaps with any other T cell. To model the specificity of individual TCRs, we assume that each T
cell can recognize only one type of antigen. If migration is successful, the T cell checks all tumour cells within a range of 𝜖k = 45
μm for a recognizable antigen. The number of checking attempts is proportional to the duration of the current time window (∆t).
If a recognizable antigen is found within 𝜖k, the T cell initiates killing. The killed tumour cell is removed from the system, and
the T cell executing the killing generates a new T cell to occupy the position of the dead tumour cell. The newly generated T cell
inherits the same TCR as its parent T cell. However, unlike its parent cell, all newly generated T cells have a survival window,
whereas those T cells present in the model from the beginning do not possess such a survival window. Althoughmemory cells are
not explicitly incorporated into the model, the above dynamics create an effective memory of antigen‑specific T cells while also
accounting for the dynamics of T‑cell expansions and contractions. We assume that all T cells with survival windows have equal
survival periods, and their timers start upon birth. Once their designated survival period elapses, they are assumed to have died
and are removed from the system, as depicted in electronic supplementary material, figure S1.

5.8. Clonal diversity index
To measure clonal diversity, we used the inverse Simpson index in equation (5.1):

D= 1∕
∑

i
(pi)2, (5.1)

where pi is the frequency of the ith combination of driver mutations.

5.9. Kaplan–Meier survival analysis and curve fitting
We defined clinical immune escape as occurring when the tumour reaches a diameter of approximately 0.5 cm (corresponding to
approx. 110 000 tumour cells) and recorded the progression time. Given the diversity of individual T‑cell repertoire, 50 in silico
patients were divided into five groups, each comprising 10 individuals. Each group shared the same TCR specificity, represented
by Q and q, with all other parameters constant. Identical specificities were compared between TACS2 and TACS3 groups. Ini‑
tially, we conducted multiple trials with q ranging from 50 to 500 and Q from 500 to 2000, consistently finding that the survival
rate of TACS3 exceeded that of TACS2. Then, we introduced phenotypic changes‑EMT. To find the most representative fit to the
empirical survival curves (electronic supplementary material, figure S11B), we further divided the whole population into n sub‑
groups, with distinct specificities given for each group. This process was repeated for increasing n, until the relative fit between
the experimentally observed and predicted survival curves did not improve with further subdivision into more groups. See elec‑
tronic supplementary material, table S2, for specific group compositions. We utilized L1 distances for quantifying differences in
predicted fp and clinical fc curves on time interval [t0, t1]:

d(fp, fc) = ||fp − fc||1 =∫
t1

t0
|fp − fc|dx. (5.2)

Best fits were selected based on minimizing equation (5.2).

5.10. Identification of epithelial-to-mesenchymal transition-associated gene signature
In the TCGA breast cancer database, based on drug treatment data, we selected 610 patients who were naive to PD‑L1 inhibitors
and identified the 40 genesmost correlatedwith E‑cadherin (CDH1) and Vimentin (VIM) using Spearman correlation analysis [56].
These genes were chosen as the gene signatures for the E andM groups. Building upon previous research indicating the presence
of hybrid phenotypes within E and M categories [69], we defined the E and M cohorts based on the expression levels of the gene
signatures in the selected 610 cases (electronic supplementary material, figure S14A,B). The cutoff values were determined by
equations (5.3) and (5.4). We selected samples with simultaneous high expression of E gene signature and low expression of M
gene signature as the E cohort. Conversely, samples with simultaneous low expression of E gene signature and high expression
of M gene signature were chosen as the M cohort. This was performed to minimize the risk of selecting E and M signatures that
contained hybrid E/M intermediate phenotypes [57,58,69].

CE = E + 𝜎E, (5.3)

 D
ow

nl
oa

de
d 

fr
om

 h
ttp

s:
//r

oy
al

so
ci

et
yp

ub
lis

hi
ng

.o
rg

/ o
n 

09
 J

ul
y 

20
25

 



15

royalsocietypublishing.org/journal/rsif
J.R.Soc.Interface

22:
20250116

..................................................................................................................

CM =M + 𝜎M, (5.4)

where CE and CM are the cutoff values of E and M cohorts, respectively, E and M are the mean expressions of E and M gene
signatures respectively, 𝜎E and 𝜎E are the standard deviations of E and M gene signature expressions, respectively.

5.11. Identification of PDCD1 high and low expression cohorts
After distinguishing the E and M cohorts, we calculate the median of PDCD1 gene expression in these two cohorts as the cutoff
value (electronic supplementary material, figure S14D). Subsequently, we further divide the E and M cohorts into high‑PDCD1
and low‑PDCD1 groups based on PDCD1 expression.
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