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Cancer progression remains a significant clinical challenge.
Phenotypic adaptation by tumor cells results in disease hetero-
geneity, which drives treatment resistance and immune escape.
T cell immunotherapy, while effective at treating some cancer
subtypes, can also fail due to limits on tumor immunogenicity or
T cell recognition. For example, one potential contributor to im-
mune escape involves the density and alignment of the extracel-
lular matrix (ECM) surrounding tumors, also known as Tumor-
Associated Collagen Signature (TACS). However, the specific
mechanisms by which aligned fibers contribute to decreased pa-
tient survival rates have not yet been decoupled. Here, we devel-
oped our EVO-ACT (EVOlutionary Agent-based Cancer T cell
interaction) model to study how TACS affects tumor evolution
and dynamic tumor-T cell interactions. We identified a vari-
ety of TACS-specific dynamical features that influence T cell in-
filtration, cancer immunoediting, and ultimate immune escape.
Our model demonstrates how TACS and phenotypic adaptation
together explain overall survival trends in breast cancer.
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Introduction
The immune system plays a central role in the adap-

tive response against tumor progression, wherein cytotoxic
(CD8+) T cells attempt to engage with and eliminate the can-
cer population. This interaction results in immunoediting of
tumor populations that can either lead to tumor escape, elim-
ination, or a sustained equilibrium period (1–5). Prior ex-
perimental and theoretical work has been directed at under-
standing how repeated tumor-immune interactions affect the
ultimate dynamics of cancer progression and escape (6–10).
These earlier models have described how clonally heteroge-
neous cancer populations evolve under adaptive immune se-
lective pressures.

It is now appreciated that the adaptive immune sys-
tem can capably clear cancer in some cases, while in others
tumor immune escape occurs. The immune microenviron-
ment plays an important and multifaceted role in this pro-
cess. One unanswered question relates to the role of ECM
organization and its effects on tumor immune recognition.
In solid malignancies, ECM geometry in the microenviron-
ment has been associated with disease stage (11, 12) and ob-
served T cell infiltration (13, 14). Specifically, empirically
observed ECM topologies are frequently categorized based

on fiber arrangement: random fibers (TACS1), circumfer-
entially aligned fibers (TACS2), and radially arranged fibers
(TACS3), illustrated in Figure 1 (12). Despite the fact that a
clear negative correlation between TACS and patient survival
has been established (15), the specific roles and extent of
TACS in sculpting T cell-driven cancer evolution remain un-
characterized. Mechanisms underlying how TACS influences
cell movement are still not fully elucidated, with divergent
opinions on the precise details involving how and to what ex-
tent the ECM mediates immune cell infiltration (13, 14, 16–
18). At present, we currently lack a physical model relating
the impact of TACS on the spatial co-evolution between an
adaptive immune repertoire and a heterogeneous population
of evading cancer cells.

To address this, we develop and apply our EVO-ACT
model to study how TACS influences tumor evolution and the
dynamic interaction between tumor and T cells. We quan-
tify differences in the dynamics of cell migration and eva-
sion, in addition to the spatial distributions of cancer cells
and immune cells, as a functional consequence of TACS.
Our results suggest that the degree of cancer immunoedit-
ing is dependent on TACS-specific differences in T cell infil-
tration and moving efficiency, and that TACS have a greater
impact on chemokine-directed T cell infiltration than they
do on evading tumor cell evasion. When applied to pre-
dict differences in TACS3-dependent disease progression,
we find that our modeling framework requires the inclu-
sion of additional phenotypic adaptation mechanisms, such
as the Epithelial-to-Mesenchymal Transition (EMT), in order
to successfully recapitulate clinically observed cancer sur-
vival trends. Our model predicts that immunogenicity differ-
ences via decreased Tumor-Associated Antigen (TAA) avail-
ability and immune checkpoint upregulation synergize to re-
sult in immune escape, which successfully predicts overall
survival trends in breast cancer (19, 20). The EVO-ACT
framework provides a detailed dynamical description of the
role of TACS in tumor evolution when subject to adaptive
immune selective pressure. We anticipate that its use can be
more broadly applied to understand cancer evolutionary pat-
terns and treatment success or failure in specific cases where
observed TACS architecture and phenotypic status are previ-
ously defined.
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Results
Stochastic agent-based modeling.
Cancer cells.

To model cancer cells, we assumed that a small collec-
tion (n ≥ 4000) corresponding to a total tumor diameter of
0.1cm of tumor precursors reside at the center of a circular
Region of Interest (ROI), from which active tumor cells may
extravasate outward, invade, and divide. These tumor cells,
together with CD8+ T cells, comprise agents in our model.
We assumed that cancer cells may divide and migrate at per-
cell rates of ⁄ and –t, respectively. Cancer cells are also
assumed to possess an initial collection of shared TAAs dis-
played on their surface. For foundational understanding, we
generated TAAs randomly according to a Poisson (‹ = 100)
distribution. Each cell may also undergo mutation or phe-
notypic adaptation with a rate of µ = 5 · 10≠4 per cell di-
vision. We assumed that each adaptation event results in an
equal likelihood of the addition or removal of a Poisson num-
ber of TAAs with a mean of 10, and that each TAA addition
or removal increases or decreases the division rate by 1% of
⁄ with equal probability. Evolution in this model results in
distinct cancer populations, or “clones”, which are distin-
guished only based on their expression of TAAs and may
occur through genetic or epigenetic adaptation mechanisms.
We accounted for the “contact guidance” theory of migration
by assuming that each cancer cell randomly selects a fiber
within 5 cell diameters (75µm) along which to migrate (12),
and equal probabilities are given to both fiber directions. We
also considered variability in the starting division rates and
TAA abundances.

In simulations that incorporate EMT, we assume that
EMT occurs once a certain total tumor burden is achieved.
Upon reaching this threshold, all dividing cells at the tumor
periphery are assumed to undergo EMT, which was modeled
by a decreased division rate (five-fold reduction), increased
migration rate (five-fold increase), and decreased immuno-
genicity (reduction of TAAs by a Poisson-distributed random
variable with mean of 15) to match previous experimental
observations (20, 21).

We utilized a Gillespie simulation-based approach to
model cancer division and migration dynamics.

CD8+ T cells.
T cells comprise the other active agents in our model-

ing framework, and we modeled their dynamics by starting
with an initial population of (N = 5000) T cells located at
the boundary of the ROI. These T cells migrate inward at a
deterministic rate of –T . Their directed migration is influ-
enced by the surrounding extrinsic microenvironment, which
includes collagen fiber alignment and chemotaxis (12, 22).
To model differential antigen specificities of distinct T cell
clones, we assumed that distinct T Cell Receptors (TCR)
exist (Rn Æ 5000), each having the capability to recognize
various antigen signatures. In this model, T cell diversity
is characterized by the absolute number of distinct antigen
specificities the T cell population can cover, which correlates
directly with the number of TAA-specific clones (rn). T cell

recognition is thus a function of both Rn and rn. To model
recognition, each migrating T cell surveys the vicinity (‘k =
45 µm). Upon encountering at least one recognizable TAA,
T cells eliminate the tumor cell and subsequently divide. To
account for lineage-specific T cell contractions in the absence
of antigen signaling, daughter T cell possess a finite survival
window, after which they are removed if they cannot recog-
nize and eliminate another cancer cell (see Figure S2 for full
details). While we do not explicitly include memory T cells
in our model, our assumptions on T cell dynamics maintain a
small population of effector T cell clones that have previously
recognized TAAs.

ECM topology.
We modeled ECM fibers situated outside the tumor core

with normally distributed lengths (mean µ = 10µm; variance
‡2 = µ/10) (23). Fiber density was assumed to decrease ra-
dially outward from the tumor center, and initially all fibers
are randomly oriented, corresponding to TACS1 (24). To ac-
count for tumor-driven TACS remodeling (12), we allowed
for each dividing tumor cell at the periphery to alter the fiber
direction from TACS1 to TACS2 within a neighborhood of
the cell (5 cell diameter, 75µm). Based on previous findings,
tumor cells can remodel fibers into a radial pattern within a
5-fold neighborhood relative to tumor radius (25). For sim-
plicity, based on the size of the central tumor, we assumed
that dividing cells at the tumor boundary will collectively re-
model fibers within ≥0.18 cm into TACS3. We also studied
the role of heterogeneous fiber alignment by adjusting the
variance of fiber orientation in each of TACS2 and TACS3.
We refer the reader to Figure S1 for the initial spatial dis-
tribution of tumor, T cells, and fibers in our model and the
Methods section for full model details.

Cancer evolution generates TACS-specific spatial sig-
natures in the absence of immune selective pressure.

In our model, tumor populations grow and acquire al-
terations that enhance their division rate, but also affect their
antigenic burden. In the absence of T cell recognition, can-
cer cells exhibited evolutionary trajectories comprised of out-
ward growth, and clones with increased fitness through en-
hancements in their growth rates are positively selected. Fig-
ure 2A represents one stochastic realization of this process
for a single tumor population that divides until reaching a di-
ameter of ≥ 0.5 cm. Our results capture the spatial variability
in tumor heterogeneity and are in qualitative agreement with
prior models in the regime of tumor growth and invasion into
neighboring tissue (26).

Given the well-established clinical relevance of TACS
(11, 12, 15, 27–29), we next aimed to identify how TACS im-
pacts cancer patient survival or tumor elimination and escape.
To investigate this, we first explored how TACS influences
the encounter between tumors and T cells. Based on the
“contact guidance” theory (30), we hypothesized that TACS
affects the spatial distribution and migration of cells. To test
this, we simulated an initially small collection of tumor cells
dividing within the three types of TACS in the absence of
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Fig. 1. Three common TACS architectures and immune infiltration scenarios. EVO-ACT considers tumors initially in TACS1,
which then progress to TACS2 and TACS3. Interactions between T cells and cancer cells can give rise to tumor elimination, temporary
equilibrium, or escape. Tumor heterogeneity arises through stochastic adaptation resulting in variable TAA presentations.

immune pressure, with TACS2 and TACS3 being perfectly
aligned. For each TACS architecture, a distinct pattern of tu-
mor spatial distribution emerged: tumor cells are randomly
packed in TACS1, they are tightly encircled in TACS2, and
radially arranged in TACS3 (Figure 3A). These patterns also
manifest in corresponding random (TACS1), circumfrential
(TACS2), and radial (TACS3) spatial distributions of tumor
clones (Figure 3A). Subsequent analysis of single-cell can-
cer migration trajectories also revealed differences in their
motion, with a random-walk pattern in TACS1, an outward
“zig-zag” motion in TACS2, and an “outward radiating” mo-
tion in TACS3. Together, these results highlight how distinct
TACS can significantly influence cancer cell migration and
the subsequent spatial heterogeneity observed across other-
wise identical underlying tumor evolutionary processes. We
postulated that such differences may be relevant for immune

recognition since, for example, the surface area of the tumor
boundary in TACS3 is substantially larger than TACS2 with
fewer subclones protected in the tumor interior.

TACS generates distinct patterns of cell migration and
consequent cancer immunoediting.

TACS determines cancer and T cell migration efficiencies.

To quantify the role of TACS on cancer and T cell mi-
gration, we next tracked migration by simulating (n = 103)
tumor cells undergoing random migration and (N = 103) T
cells undergoing directed migration toward a chemokine sig-
nal over a fixed time period. In each case, we maintained
perfect alignment of TACS2 and TACS3 for comparison pur-
poses. Our simulations predict that migration efficiencies in
our model are maximal in TACS3, intermediate in TACS1,
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Fig. 2. Spatial heterogeneity obtained through cancer evolutionary progression A: The spatial distribution of cancer clones is
illustrated following progression to ≥ 0.5cm diameter (corresponding to ≥110000 tumor cells). Gray cells represent daughter cells
arising from the founder clone, and additional colors distinguish subsequent clones that harbor distinct antigen expression patterns. B:
A representative fish plot indicating the frequency of each antigenic subclone, where the brown represents the initial clone.The vertical
axis represents the frequency of each tumor clone and the horizontal axis represents the generation.

and minimal in TACS2 for both T cells and tumor cells (Fig-
ure 3B-C). These findings are consistent with the fact that
radially oriented TACS3 fibers direct T cell movement to the
primary tumor mass, while TACS2 results in circumferential
movement that reduces the overall migration rate observed
in randomly oriented TACS1 fibers. Despite similar trends
in the relative cancer and immune cell movements for each
TACS, these differences were substantially more pronounced
for T cells than for cancer cells (Figure 3B-C). These results
suggest that the benefit to migration of TACS3 significantly
favors T cell infiltration over cancer escape.

To better understand the role of TACS fibers and cell
signaling on T cell migration, we performed additional sim-
ulations tracking the migration efficiency of (N = 500) T
cells from the ROI boundary to the tumor center boundary
under TACS1-3. We also independently varied the regional
thickness of aligned fibers and the strength of the chemokine
gradient guiding T cell migration. Migration efficiency was
taken to be the inverse of mean migration time, and each re-
sult is normalized to the mean values obtained for TACS1.
Our results (Figure 3D-E) illustrate the spectrum on which
highly vs. loosely aligned TACS influence T cell migration.
Larger regions of TACS fibers amplify the observed TACS-
specific migration differences, and a larger chemokine gra-
dient consistently enhances infiltration efficiency across all
TACS conditions. Moreover, our results show that TACS2
does not constitute an absolute barrier to T cell infiltration;
rather, it diminishes the efficiency of T cell infiltration. The
degree to which this efficiency is diminished relies on factors
such as the degree of alignment and thickness of the TACS2
region. Our findings support previous work showing that

clinically observed patterns of T cell exclusion are consis-
tent with differences in T cell chemical signaling rather than
a physical barrier to T cell infiltration (17).

TACS-specific tumor spatial heterogeneity and T cell infiltra-
tion together generate variety in cancer immunoediting.

We next sought to understand how TACS-dependent
spatial distributions in cancer clones and variable T cell in-
filtration efficiencies together affect tumor elimination and
escape. Given that T cell infiltration is often correlated with
greater patient overall survival across various tumor subtypes
(31–33), we first quantified the extent of T cell infiltration
in TACS environments by comparing the spatial distribution
of T cell density in the tumor core and tumor margin. Since
our model does not include other cell types present in the tu-
mor microenvironment (TME), we assumed that the tumor
margin in our model is immediately exterior to the boundary
of the tumor core and extends outward by 250 µm (17). We
performed largescale stochastic simulations of tumor growth,
T cell infiltration and eventual tumor-T cell interactions for
TACS3≠ (Figure 4A-D) and TACS3+ (Figure 4E-H) condi-
tions. In each case, we calculated an average T cell density
in the tumor core relative to the tumor margin to differentiate
infiltrating and non-infiltrating T cells at the tumor boundary
(indicated by the red dashed lines in Figure 4B,D,F,H).

We observed distinct profiles of T cell infiltration in
TACS3≠ (Figure 4A-D) and TACS3+ (Figure 4E-H) condi-
tions. Heat maps depicting T cell densities indicate regions
where active T cell recognition and concomitant expansion
occurs (Figure 4A,C,E,G). In particular, TACS3+ environ-
ments are characterized by high T cell infiltration into the
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Fig. 3. TACS influences spatial distribution, migration direction and efficiency of both tumor cells and T cells, with chemical
attractant amplifying TACS impact on T cell infiltration efficiency. A: Tumor spatial distribution (⁄ = 0.1, –t = 0, –T = 0), antigenic
clonal variant spatial distribution (⁄ = 0.1, –t = 0, –T = 0) and single-cell migration trajectories (⁄ = 0, –t = 0.1, –T = 0) in TACS1-3.
B: Average tumor invasion distance (n = 103 tumor cells) across TACS1 to TACS3 within a fixed time frame. TACS2 and TACS3 are
perfectly aligned. ⁄ = 0, –t = 0.1, –T = 0. C: Average T cell infiltration distance (N = 103 T cells) across TACS1 to TACS3 within the
consistent time frame depicted in B. TACS2 and TACS3 are perfectly aligned. ⁄ = 0, –t = 0, –T = 0.1 D: Normalized T cell infiltration
efficiency in TACS1-3 with varying alignment region thickness and alignment variance. We measured the time taken for N=500 T cells to
infiltrate from the boundary of the ROI to the boundary of the central tumor circle under varying thicknesses of the alignment region and
varying alignment variances of TACS2 and TACS3. This time was normalized against the time spent in TACS1. The semi-transparent
gray plane in the graph represents the baseline or T cell infiltration efficiency in TACS 1. The left side of this plane represents the
infiltration efficiency of T cells in TACS2, with TACS2 features becoming more pronounced as one moves further to the left. Conversely,
the right side of this plane represents the infiltration efficiency of T cells in TACS3, with TACS3 features becoming more pronounced
as one moves further to the right. The y-axis represents the thickness of the alignment region, with thicker regions positioned toward
the inner side. ⁄ = 0, –t = 0, –T = 0.1. E: Normalized T cell infiltration efficiency in TACS1-3 with varying chemokine gradients and
alignment variances. We replicated the experiments in D, with a default aligned region thickness of 0.5mm, and replaced the regional
thickness of aligned fiber with chemokine gradients. ⁄ = 0, –t = 0, –T = 0.1.

tumor core relative to the tumor margin. These findings con-
trast with TACS3≠ environments, which were characterized
by low to intermediate levels of T cell infiltration (Figure
4B,D,F,H). These trends were maintained in additional sim-
ulations that assumed perfectly aligned TACS2 and TACS3
signatures (Figure S3). The observation that enhanced infil-
tration and consequent T cell recognition occurs in a TACS3
environment is consistent with the prior finding that TACS3
provides greater benefit to T cell mobility (34, 35). More-
over, reductions in T cell infiltration in TACS2 still permit T
cell recognition and do not function as an absolute barrier to
recognition, even in perfectly circumscribed tumors (Figure
S3). Lastly, greater TACS2 thickness enhances the inhibitory
capacity on T cells, thereby promoting tumor evasion (Figure
S4).

Given these differences in T cell infiltration, we next
sought to observe how TACS-specific effects on cell migra-
tion and tumor heterogeneity together impact immunogenic-
ity during tumor progression. We performed additional sim-
ulations to assess TACS3≠ T cell infiltration in greater de-
tail. We first modeled an immune-excluded phenotype by
confining 95% of T cells to the tumor margin. These sim-
ulations were compared against cases that allowed for T

cell infiltration. In all conditions, we tracked T cell infil-
tration into the tumor core (Tc), tumor margin (Tm), and
the ratio Tc : Tm (Figure 4I,L,O). We subsequently repeated
10 replicates for each condition, and average tumor anti-
genic burden was calculated over time in each case (Figure
4K,M,Q). TACS3≠ cases resulted in both immune-excluded
and immune-infiltrated tumors (Figure 4I-Q), and only a sub-
set of cases with T cell infiltration exhibited significant T cell
expansions, which we distinguish as ‘non-recognizing’ (Fig-
ure 4L-N) or ‘recognizing’ (Figure 4O-Q). In both immune-
excluded and infiltrated non-recognizing cases, we observed
a steadily increasing average antigenic burden during can-
cer progression, which is comparable to empirically observed
mutation accumulation rates (Figure 4K,N) (36, 37). This
behavior contrasted with the infiltrated recognizing case,
wherein TAA availability notably declined over time and is
consistent with strong immunoediting (Figure 4O-Q). Our
model predicts that active immune pressure results in tumor
clones that tend to become less immunogenic over time, sug-
gestive of the strong selective pressure operant during T cell
infiltration and in agreement with previous findings (2, 38).
Moreover, these dynamics underscore the fact that T cell in-
filtration alone is insufficient in discerning T cell response,
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Fig. 4. TACS impacts spatial heterogeneity and infiltration levels of T cells, consequently influencing immunoediting. TACS3
promotes more efficient T cell infiltration. A, C, E, G: Illustrative examples of tumor-T cell interaction snapshots and associated T
cell density heatmaps within TACS3≠ (A, C) and TACS3+ (E, G) conditions. B, D, F, H: The radial distribution of T cell density from
the tumor center to the boundary of ROI is depicted. The red dashed line represents the boundary of the tumor core in the above two
conditions, Rn = 210, rn = 10. I, L, O: Tumor burden and T cell density were quantified in the tumor core (Tc) and margin (Tm), and
Tc:Tm. In immune exclusion and non-recognizing T cell inflammation conditions, Rn = 210, rn = 0. In recognizing T cell inflammation
condition, Rn = 210, rn = 10. J, M, P: Snapshots of tumor and T cell interactions in three T cell infiltration conditions. K, N, Q: The
average antigen levels were analyzed for each of the three conditions across 10 iterations. In each plot, initial antigen levels (A0)
partition the graph into red (antigen gain) and blue (antigen loss) segments. Higher y-values indicate higher antigenicity. The red
dashed line in Q marks the onset of widespread tumor killing or immunoediting by T cells. In all conditions, ⁄=0.1, –t=0.02, –T =1.8.

6 | bioR‰iv

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted May 15, 2024. ; https://doi.org/10.1101/2024.05.13.594017doi: bioRxiv preprint 

https://doi.org/10.1101/2024.05.13.594017
http://creativecommons.org/licenses/by-nc-nd/4.0/


with spatially dependent T cell expansion more indicative of
recognition and tumor elimination. Figure S5 illustrates how
TACS indirectly leads to different expansion patterns of T
cells by affecting the spatial positioning of tumor clones or
TAAs.

TACS3-associated phenotypic adaptability decreases
predicted patient survival rates and impairs the effi-
ciency of checkpoint inhibitor therapy.
TACS3-associated phenotypic changes significantly dimin-
ish survival rates.

Our previous results suggested that TACS3 in isolation
confers an overall net benefit to immune recognition (Figure
3C). This prediction was unexpected in light of the fact that
survival rates in TACS3+ conditions are generally lower than
those observed for TACS3≠ conditions (15).

To investigate this further, we performed largescale
stochastic simulations in perfectly aligned TACS2 and
TACS3 conditions, each characterized by varying TCR
recognition diversity. Tumor death was assumed at ≥0.5 cm
(≥110,000 cells), with recorded times. We explored several
parameter regimes but consistently found that TACS3 con-
ditions resulted in enhanced survival compared to TACS2
cases (Figure 5A). These findings suggest that TACS-specific
changes alone do not explain observed survival in our mod-
eling framework, and they motivated us to account for ad-
ditional phenotypic changes that are known to be present in
later diseases. To study this, we introduced EMT, which is
a commonly occurring transition in epithelial cancers dur-
ing disease progression (39). By introducing EMT sepa-
rately in TACS2 and TACS3, we observed higher survival
rates in TACS3 compared to TACS2 (Figure 5B, Figure S6A).
Our simulations that include EMT only after TACS2-TACS3
progression most closely match clinically observed (15) out-
comes. (Figure 5C). These findings are further supported by
experimental evidence demonstrating that ECM influences
EMT regulation, and reciprocally, EMT induces changes in
ECM remodeling (40–42).

To better understand the respective impacts of TACS3
and EMT on disease progression, we varied the occurrence
of EMT and the timing of TACS3 initiation. We first modi-
fied the timing of TACS3 occurrence, which from our earlier
findings was expected to prolong T cell residence times and
infiltration efficiency (Figure 6D-E). We observed significant
reductions in tumor burden with early TACS3, along with an
earlier occurrence of substantial tumor killing (Figure 6A-B).
While late TACS3 exhibits a higher peak in tumor burden, re-
sulting in greater T cell expansion compared to early TACS3
(Figure 6B), the earlier onset of tumor killing in early TACS3
limits the time available for tumor evolution. These observa-
tions suggest that: 1) TACS3 facilitates enhanced T cell in-
filtration, which is consistent with our previous findings, 2)
curtails the window for tumor evolution, and 3) partially alle-
viates challenges associated with tumor eradication. Hence,
by controlling the timing of TACS3 emergence, we did not
observe significant challenges to the immune system. Even
when TACS3 appeared later, the efficient infiltration facili-

tated by TACS3 could assist T cells in encountering cognate
antigens (Figure 6D).

Given that TACS3 alone cannot fully explain the clini-
cally observed survival in breast cancer (Figure 5A), we next
assessed the impact of EMT occurring alongside TACS3.
We identified three differences in EMT≠ (Figure 6D-E) vs.
EMT+ (Figure 6F-G) cases: Firstly, tumor burden is no-
tably higher in EMT+ cases. Secondly, the time at which tu-
mor burden begins to significantly decrease is later in EMT+

cases. Thirdly, there is a less dramatic decrease in tumor bur-
den in EMT+ cases. These observations can be explained
by higher levels of TAA-specific heterogeneity, reduced im-
munogenicity, and enhanced migration in EMT+ cases, all of
which impair T cell killing. TACS3 enhances T cell infiltra-
tion relative to TACS2 cases (Figure 6A, F), thereby leading
to earlier encounters between T cells and tumors and reduc-
tions in tumor burden (Figure 6F-G).

Collectively, these results suggest that phenotypic adap-
tation occurring late in TACS3 poses significant challenges
to the immune system and reduces cancer elimination rates.
From this, we conclude that the occurrence of TACS3 alone
in our model cannot fully account for observed survival rates
among breast cancer patients (15). Factors conducive to tu-
mor fitness and adaptability concurrent with TACS3, such as
EMT, are necessary to explain observed survival trends, and
our model suggests that cancer phenotypic adaptive mech-
anisms significantly contribute to diminished survival out-
comes (Figure S6B-C). This further substantiates our earlier
hypothesis regarding the concurrence of EMT and TACS3.
Under this assumption, we also compared the tumor evolu-
tion trajectories between TACS3≠ and TACS3+ conditions
with varying TCR recognition abilities; representative results
are shown in Figure S7.

Increased checkpoint expression in TACS3 further elevates
tumor escape rates.

Given the impact of TACS and phenotypic adaptation
on altered immunogenicity and subsequent expected cancer
escape, along with the ability of mesenchymal tumor cells
to upregulate PD-1 (Programmed Cell Death Protein-1)/PD-
L1 (Programmed Death Ligand-1) expression by modulat-
ing certain pathways (43), we further explored how TACS-
specific tumor evolution affects responsiveness to PD-1/PD-
L1 inhibitor and its impact on patient survival. We next con-
sidered an increase in PD-1/PD-L1 levels at a certain time
point, hindering T cell recognition of tumor cells. Based on
our prior results, we simulated conditional combinations con-
sidered in Figure 5C. In our model, immune checkpoint up-
regulation raises the threshold for T cell recognition of TAA.
While there are multiple ways to account for this, we decided
to allow cancer cells to become eliminated and recognized
only if at least two TAAs were recognized since this uni-
formly impairs all T cell recognition in the presence of im-
mune checkpoint. After a specific duration, we administered
inhibitors to restore TCR recognition capability to its pre-
elevated state. We conducted 10 replicates in each of the two
settings, keeping all other parameters consistent. Represen-
tative images are depicted in Figure 7A,C.
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Fig. 5. The concurrence of TACS3 and tumor adaptive changes is a significant factor contributing to the lower survival rates
in TACS3 cases. The survival probability from 50 repeated experiments with varying TCR diversity in TACS2/EMT-, TACS3/EMT- (A),
TACS2/EMT+, TACS3/EMT+ (B), TACS2/EMT-, TACS3/EMT+ (C). In all simulations, we assumed that clinical death occurs when the
tumor size reaches ≥0.5cm. To simplify, we reduced the ROI size from a radius of 0.4cm to 0.25cm, meaning that the initial distance of
T cells from the tumor is closer. ⁄=0.4, –t=0.01, –T =1.6, µ = 8 · 10≠4, Rn=500≥2500, rn=100≥500.

In our repeated experiments, TACS3≠ yielded a high
variability of responders (leading to tumor elimination)
and non-responders (indicating tumor escape; Figure 7A-
B). Through an examination of the antigenic level of tu-
mor clones, we found differing levels of immunoediting.
Conversely, we consistently observed tumor escape in the
TACS3+ setting, indicating either non-responsiveness or a
lack of highly effective responses (Figure 7C-D). Here, EMT
reduces the effective number of TAAs available for T cell
targeting. Elevated PD-L1 levels further exacerbate this ef-
fect, presenting a considerable obstacle to the immune re-
sponse. In the presence of a substantial tumor burden, even
with the addition of inhibitors, there is minimal, if any, en-
hancement in cancer cell recognition. We further compared
the proportions of T cells before the application of PD-L1
inhibition, and found that a higher proportion of T cells cor-
relates with lower tumor burdens and favorable ultimate can-
cer elimination rates (Figure 7E-F). This observation aligns
with recent findings regarding triple-negative breast cancer
(TNBC) that the proliferative fractions of CD8+ T cells as
the second most significant predictor of immune checkpoint
blockade response, following MHC I&II. (44). Therefore,
we posit that the concomitant occurrence of EMT and im-
mune checkpoint together in TACS3 significantly diminishes
T cell recognition and hence immune-mediated cancer elim-
ination, which consequently reduces the responsiveness of
checkpoint inhibitors.

To validate our findings, we conducted a survival anal-
ysis on breast cancer (BRCA) patients from The Cancer
Genome Atlas (TCGA) database. We utilized E-cadherin
(CDH1) and Vimentin (VIM) as markers to delineate ep-
ithelial (E) and mesenchymal (M) cohorts, respectively (45).
Each cohort comprised 40 genes associated with its respec-
tive marker, constituting the gene signatures for the E and
M cohorts (Figure S9A-B; please refer to the Methods for
full details) (46–48). We compared survival differences be-
tween the two cohorts and although general trends were in
agreement with our model predictions, we found no statisti-

cal significance (Figure S9C). We observed similar findings
when considering PDCD1 up-regulated vs. down-regulated
cases (Figure S9D-E). However, when patients were simulta-
neously stratified according to EMT and PDCD1 status, we
identified a statistically significant reduction in overall sur-
vival for patients with cancer cells having M/PDCD1+ sig-
natures, relative to those with E/PDCD1- signatures (Figure
7G). These findings are in agreement with our model predic-
tions and offer an explanation for how phenotypic adaptation
and immune checkpoint together can impair T cell recogni-
tion.

Discussion
In solid tumors, ECM topology is known to be an im-

portant feature of the TME that affects tumor progression,
metastasis, and therapeutic resistance (49, 50). However, the
precise way in which cancer growth and tumor-immune co-
evolution are affected by this topology remains unclear. To
begin to address this, we developed EVO-ACT model to ex-
plore the dynamic and spatial aspects of immune cell and tu-
mor interaction as a function of TACS. We applied our model
to gain quantitative insights into several dynamic features of
this complex process, including how TACS affects both tu-
mor cell and T cell migration efficiency. Our findings sug-
gest that TACS exert a greater impact on chemokine-driven
T cell infiltration, and they do not constitute an absolute bar-
rier to T cell infiltration. Our findings predict that TACS-
specific T cell infiltration patterns influence immunoediting,
and TACS3, together with late-stage phenotypic adaptations
like EMT and elevated PD-L1 expression, collectively con-
tribute to reduced predicted patient survival and decreased
responsiveness to PD-L1 inhibitors.

Our work identified the impact of TACS in cell migra-
tion direction, spatial distribution and quantified the cell in-
vasion efficiency in three common TACS, with TACS3 >
TACS1 > TACS2. The highest migration efficiency observed
in TACS3 offers new insights into the enhanced cell mi-
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Fig. 6. Tumor and T Cell interaction dynamics in the presence or absence of TACS3 and EMT. A: Tumor burden is depicted over
time. The red dashed lines represent the time at which T cells initiate large-scale tumor killing in each condition. B: T cell counts are
depicted over time. C: Clonal diversity index is depicted over time. Please refer to Methods for further details on the clonal diversity
index. D-G: Snapshots of each condition at different times respectively. T cells are represented by green, while the remaining cells
represent tumor cells, with different colors indicating distinct tumor clones. Among them, D: TACS3 occurs without EMT, and TACS3
occurs early. E: TACS3 occurs without EMT, and TACS3 occurs late. F: EMT occurs without TACS3. G: TACS3 and EMT occur
simultaneously. H: Final distribution of fibers in each condition. TACS1 fibers are marked with black, TACS2 fibers are marked with
blue, and TACS3 fibers are marked with red. In all conditions, ⁄=0.1, –t=0.02, –T =1.8, Rn = 210, rn = 10.

gration observed in TACS3 compared to random fiber envi-
ronments (34). Another widely accepted explanation posits
that tumor cells in TACS3 exhibit fewer protrusions, result-
ing in increased directional persistence and, consequently,
enhanced invasion efficiency (35). Additionally, our find-
ings indicate that TACS does not constitute an absolute bar-
rier to cell invasion, which has been debated in recent years
(13, 14, 16, 17); rather, it influences cell invasion efficiency
significantly. However, the variation in invasion efficiency
induced by TACS differs between tumor cells and T cells.
Under the directed influence of chemokines, T cells are more
profoundly affected by TACS. This finding also suggests that
adopting stroma-mediating treatments may offer greater as-
sistance to T cells. Prior work has underscored the growing

recognition of the importance of ECM geometry in influenc-
ing cell invasion and deepening our understanding of the el-
evated invasion efficiency in aligned fibers (22, 34, 51, 52).
Future studies should build upon this foundation by consider-
ing that modifying the TACS environment may have differing
impacts on tumor cells and T cells.

Since TACS does not completely hinder T cell infiltra-
tion, our analysis focused on highlighting the heterogeneous
T cell spatial distributions in each TACS. Prior work has il-
lustrated the importance of including chemokine attraction
and antigen specificity for generating observed T cell spatial
distributions (32). Our results demonstrate that TACS also
plays a significant additional role in generating observed T
cell spatial distributions.Given the significant role of TACS
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Fig. 7. TACS-specific tumor evolution affects checkpoint inhibitor efficiency. A: Representative tumor burden dynamics and
associated mean TAA counts in the TACS3-, EMT- conditions are depicted using identical model parameters. The red and green dashed
lines represent the time of PD-L1 elevation and the administration of the PD-1/PD-L1 inhibitor, respectively. Three representative
images are shown from left to right, illustrating three scenarios: (1) inhibitor responder, where tumors are eliminated regardless of
inhibitor administration; (2) inhibitor responder, where inhibitor administration leads to tumor elimination, while without inhibitor, tumor
escape occurs; (3) inhibitor non-responder, where tumors escape both with and without inhibitor administration. B: In the TACS3-, EMT-
condition, the probability distributions of tumor elimination and escape after the addition of the inhibitor are depicted. C: Under the same
parameter regime, the representative tumor burden dynamics and associated mean TAA counts in the TACS3+, EMT+ conditions are
depicted. The gray dashed line represents the time of EMT occurrence. Two red dashed lines represent the time of PD-L1 elevation
and the administration of the PD-1/PD-L1 inhibitor, respectively. In all three scenarios, tumors all escape. D: In the TACS3+, EMT+
condition, the probability distributions of tumor elimination and escape after the addition of the inhibitor are depicted. E, F: In both
aforementioned settings, the proportions of tumor and T cells at the pre-treatment time point are depicted. G: The survival probability of
two cohorts, E with low PDCD1 expression and M with high PDCD1 expression, in the TCGA BRCA database were analyzed. Please
refer to Methods for more details. In all conditions, ⁄=0.2, –t=0.01, –T =1.8, Rn=500, rn=100.
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in allocating spatial positions for tumor clones, we argue that
the spatial distribution of T cell clones is also influenced
by TACS, which in turn influences the location of expand-
ing T cell clones (Figure S5). An alternative theoretical ap-
proach focused on T cell distributions in the tumor core, in-
vasive margin, and tumor stroma. Significant differences in
T cell distribution and function have been observed in these
three distinct regions, with notable characteristics identified
in each. T cells within the tumor core exhibit tight inter-
actions with tumor cells due to their close proximity (53).
The prolonged stimulation from tumor antigens may be a
contributing factor to T cell exhaustion, supported by re-
cent research demonstrating that chronic tumor antigen/TCR
stimulation reinforces epigenetic programs associated with
dysfunctional hallmarks, resulting in dysfunctional T cells
(32, 54). These results are consistent with prior findings that
T cell dysfunction and exhaustion correspond to higher ex-
pression of co-stimulatory molecules such as PD-1, TIM-3,
and VISTA (55, 56). This phenomena is comparable to our
model (Figure S5) in settings where T cells that have inter-
acted with the tumor are assumed to be exhausted, leading to
the concentration of potentially exhausted T cells inside the
tumor. In contrast, T cells in the invasive border are believed
to have higher density, functionality, and a weak expression
of co-inhibitor molecules compared to those in the tumor core
or stroma (55, 57, 58). In our model, T cells migrate toward
the tumor, at which point factors such as antigen specificity,
inflammatory cytokines, and distinct TACS lead to varying
distributions of expanding T cells within the tumor. However,
we found that the majority of T cell clones are still predomi-
nantly located at the tumor margin.

Our results demonstrate that TACS modulate T cell in-
filtration efficiency, which in turn influences tumor evolu-
tion through distinct levels of immunoediting. TACS-specific
changes in T cell infiltration therefore result in varying de-
grees of selective pressure on tumors. Under conditions of
heightened T cell infiltration and recognition, potent nega-
tive selective pressure drives surviving cancer cells to have
reduced immunogenicity (2). This heterogeneity of T cell
infiltration and neoantigen-derived immunoediting has been
observed in various cancers, such as lung cancer and breast
cancer (2–4, 17), which can be achieved through loss of het-
erozygosity in human leukocyte antigens, depletion of ex-
pressed neoantigens or decreased TAAs presentation effi-
ciency (2, 4). Furthermore, studies indicate that the distri-
bution of tumor mutation burden (TMB) is heterogeneous,
and tumors with heterogeneous infiltration are more prone to
manifesting a heterogeneous TMB (2, 26, 59). Our results
corroborate this finding, as demonstrated in Figure S10. We
propose that TACSs also plays a significant role in inducing
TMB heterogeneity.

While we have shown that TACS may influence tu-
mor evolution in a variety of ways, our results indicate that
one potential reason for the lower survival rates observed in
TACS3+ cancer patients is the concomitant occurrence of
phenotypic adaptation (15). In particular, clinically observed
survival trends in TACS3+ and TACS3≠ cases in breast can-

cer were only explained in our modeling framework by incor-
porating additional phenotypic adaptation mechanisms, in-
cluding EMT (15). Our results suggest that TACS3 may not
be the primary driver of lower survival rates. EMT provides
one possible explanation wherein heterogeneous and invasive
clones are facilitated in a TACS3+ environment to metas-
tasize (12, 30, 34, 52, 60, 61). Other relevant phenotypic
adaptation mechanisms may also actively affect these results,
and such distinct mechanisms may occur and be of direct im-
portance for distinct cancer subtypes. Relevant mechanisms
for metastatic disease are marked by higher growth rates and
lower antigenicity compared to their ancestors, making them
more resistant to elimination (62). Moreover, we propose
that such cellular phenotypic alterations typically manifest in
the late stages. Otherwise, if occurring early, such as dur-
ing the TACS2 phase, the rapid escalation of tumor hetero-
geneity and the hindrance posed by TACS2 on T cell infiltra-
tion would expedite tumor evasion rapidly (Figure 6F). Our
results further indicate that this TACS-specific tumor evo-
lution trajectory also influences the efficacy of checkpoint
inhibitors. The different degrees of immunoediting caused
by TACS affect the responsiveness of PD-L1 inhibitors (44).
Our findings also indirectly suggest that the earlier use of in-
hibitors may lead to better outcomes, underscoring the im-
portance of early differentiation between inhibitor responders
and non-responders.

Our foundational model makes a number of assump-
tions. Firstly, in our model, we assume that all cells at the
tumor boundary undergo EMT simultaneously upon reach-
ing the EMT threshold. Also, we assume that the mutation
rates of all tumor clones are identical. However, in reality,
different tumor clones may undergo EMT and mutation at
different times and with different rates, potentially leading to
larger variations in growth, migration, and collective migra-
tion across distinct intratumoral subpopulations. Secondly,
our model does not account for the presence of exhausted T
cells; T cells are either in an activated state or have died and
are subsequently removed from the system. We expect that
in reality exhausted T cells that persist within the tumor core
provide additional hindrance to T cell killing. It is also likely
that the pro- vs. anti-tumor characteristics of the immune
microenvironment, which we did not model in detail here,
further determine the extent to which this exhaustion occurs.
The presence of exhausted T cells and their occupation of
space, along with increased metabolic demands such as oxy-
gen consumption, further exacerbates the difficulty of T cell
killing in real-life situations compared to our model. Thirdly,
our framework models tumor growth and tumor-immune in-
teractions in a 2D space, whereas real tumor populations de-
velop in three dimensions. Our analysis considered ideal-
ized TACS2 and TACS3 collagen arrangements for simula-
tions when in reality a number of variable and overlapping
topologies likely exist. The incorporation of patient-specific
ECM orientation is an important next step and the focus of
future research efforts. Lastly, the current model only consid-
ers the interaction between tumor cells and T cells, yet many
other features in the TME affect T cell recognition, including
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dendritic cells, tumor-associated macrophages (TAM), and
metabolic and chemical signatures. Nonetheless, our founda-
tional model is able to provide a population dynamical expla-
nation for a variety of relevant characteristics of the tumor-
immune interaction.

Taken together, our results quantify the impact of ECM
architecture on the tumor-immune interaction, and our mod-
eling approach represents a novel mathematical framework to
incorporate collagen-specific information in to a description
of tumor and immune co-evolution. We also speculate that
TACS may affect all elements in the TME reliant on fiber
movement or requiring ECM penetration, potentially influ-
encing tumor evolution or treatment outcomes. Hence, our
findings also indirectly affirm the importance and necessity
of adopting stroma-modifying treatments in clinical practice.
Moreover, since ECM architecture does not exist indepen-
dently, further research is required to investigate the collec-
tive effects of various TACS byproducts, such as angiogen-
esis, spatial distribution, interactions of different cells, and
varying microenvironments, on the tumor-immune interac-
tion.

Methods
Initial conditions and model structure. The imple-

mented program utilizes Gillespie’s simulation algorithm to
model stochastic events for two agents: tumor cells and T
cells. Tumor cell events include invasion, division, and mi-
gration, each governed by rates “, ⁄, –t respectively. Suc-
cessfully divided cells undergo mutation based on the mu-
tation rate, µ per cell division. Initially, tumor cells are as-
sumed homogeneous. T cells only perform movement, with
a rate –T . We define an ROI with radius R, containing a cir-
cular tumor mass centrally with radius r. Tumor cells inside
this central circle (n ≥ 4000) are not tracked until they in-
vade beyond it. Upon invasion, cells can migrate or divide.
Initially, we assume that 200 tumor cells have invaded the
central mass. T cells (N = 5000) are initially positioned at
the ROI boundary and commence infiltration towards the tu-
mor, as illustrated in Figure S1. Some important parameters
are listed in Table S1.

TACS generation and remodeling. Collagen fibers
occupy the annular space between the central tumor and
the surrounding ROI. Fiber density is imposed along a lin-
ear gradient maximal at the tumor boundary. (12). The
lengths of these fibers follow a normal distribution (mean
µ = 10µm; variance ‡2 = µ/10). Initially, all fibers are ran-
domly packed, and their directions are normally distributed,
forming TACS1. Remodeling is accounted for by allowing
cancer cells at the tumor boundary to change the fiber orien-
tation. With each tumor cell division, fibers within a radius of
r2 = 75µm are remodeled into perfectly aligned TACS2. The
remodeled fibers will orient perpendicular to the line link-
ing the dividing cell’s center and the center of the fiber un-
dergoing remodeling. During EMT concurrent with TACS3,
cells on the tumor periphery remodel fibers within a radius
of r3 ≥ 0.18cm into perfectly aligned TACS3. This remod-
eling is based on previous findings suggesting that tumors

can alter fibers within a range of 5 times the original tu-
mor spheroid diameter into TACS3 (25). We also assume
that once fibers are remodeled into TACS3, they cannot re-
vert to TACS2. In the article, we employ the terms TACS2
and TACS3 to represent the consistent distribution of fibers
throughout the entire ROI as either TACS2 or TACS3. We
also assume higher alignment closer to the tumor center and
lower alignment farther away (12). This is equivalent to the
tumor no longer undergoing remodeling of fibers under a de-
terministic fiber architecture. Conversely, we use TACS3≠

and TACS3+ to denote the transition of TACS from TACS1
to TACS2 or TACS3, indicating that the tumor will gradually
remodel fibers with the occurrence of division or EMT.

Tumor division. We consider population dynamics for
individual clones in the population. Specifically, When tumor
division occurs, we first calculate the total rate of division for
each tumor clone based on its size and division rate. Sub-
sequently, we uniformly select a cell at random for division
from any tumor clone according to its total division rate, en-
suring that the chosen position for division does not overlap
with any existing tumor cell. During each division time win-
dow, we allow a maximum of 100 cells to attempt division,
with each cell having up to 200 attempts to select a division
position. Upon successful division, the newly divided cell re-
models fibers within a range of r2 from TACS1 to perfectly
aligned TACS2. If no suitable division position is found for
a cell, no division occurs. Following division, each newly
divided cell undergoes mutation based on the mutation rate,
µ.

Tumor mutation. We assume that each tumor clone
possesses a certain quantity of TAAs, following a Poisson
distribution with a mean of n = 100. Mutated cells randomly
adjust the quantity of antigens, either increasing or decreas-
ing. The variance in adjusted antigen levels also follows a
Poisson distribution with a mean of 10. The division rate of
the mutated tumor clone will increase or decrease by 1 % of
⁄ with each gain or loss of a TAA. Conversely, if no muta-
tion occurs, the new tumor cell retains the same properties
as the original tumor cell, including division rate, migration
rate, and antigen set.

Tumor migration. When tumor migration occurs, we
compute the migration probability for each tumor clone, akin
to calculating the division probability. Subsequently, we ran-
domly select a tumor clone based on its migration probability
and then randomly choose a cell from within that clone for
migration. Each tumor cell randomly selects a fiber within
a range of ‘t = 75µm as the migration direction. There’s an
equal probability of choosing either the selected fiber’s direc-
tion or its opposite direction. The distance traveled by the tu-
mor cell is determined by the diffusion coefficient D and the
current time window (t). Each step in the EVO-ACT model
checks for issues related to spatial overlap to ensure that nei-
ther the migration path nor the destination of each tumor cell
overlaps with any other tumor cell.

EMT. In our model, the initiation of EMT depends on
the tumor burden. Once the cumulative tumor burden ex-
ceeds a specified threshold, which varies in each condition,
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all divisible tumor cells undergo EMT simultaneously. EMT
induces changes including a fivefold decrease in tumor di-
vision rate ⁄, a fivefold increase in migration rate –, and a
reduction in tumor clone immunogenicity, resulting in a ran-
dom decrease in tumor antigen quantity following a Poisson
distribution with a mean of 15. Moreover, all cells undergo-
ing EMT will remodel fibers within a range of r3 to TACS3.

T cell migration, killing, and expansion When T cell
migration occurs, we randomly select a T cell for migration.
The direction of T cell migration is influenced by both the
gradient of tumor-secreted chemokines and the orientation of
surrounding fibers within a range of ‘T . The migration dis-
tance of the T cell depends on the intensity of the chemokine
gradient (�C), the local fiber density, and the duration of the
current time window (t). We ensure that neither the migra-
tion path nor the destination of the T cell overlaps with any
other T cell. To model the specificity of individual TCRs,
we assume that each T cell can recognize only one type of
antigen. If migration is successful, the T cell checks all tu-
mor cells within a range of ‘k = 80µm for a recognizable
antigen. The number of checking attempts is proportional to
the duration of the current time window (t). If a recogniz-
able antigen is found within ‘k, the T cell initiates killing.
The killed tumor cell is removed from the system, and the T
cell executing the killing generates a new T cell to occupy
the position of the dead tumor cell. The newly generated T
cell inherits the same TCR as its parent T cell. However, un-
like its parent cell, all newly generated T cells have a survival
window, whereas those T cells present in the model from the
beginning do not possess such a survival window. Although
memory cells are not explicitly incorporated into the model,
the above dynamics create an effective memory of antigen-
specific T cells while also accounting for the dynamics of T
cell expansions and contractions. We assume that all T cells
with survival windows have equal survival periods, and their
timers start upon birth. Once their designated survival period
elapses, they are assumed to have died and are removed from
the system, as depicted in Figure S2.

Clonal diversity index. To measure clonal diversity, we
used the inverse Simpson index defined as D = 1/

q
i(pi)2,

where pi is the frequency of the ith combination of driver
mutations.

Identification of EMT-associated gene signature. In
the TCGA BRCA database, we selected 610 cases and iden-
tified the 40 genes most correlated with E-cadherin (CDH1)
and Vimentin (VIM) using Spearman correlation analysis
(45). These genes were chosen as the gene signatures for the
E and M groups. Building upon previous research indicating
the presence of hybrid phenotypes within E and M categories
(46), we defined the E and M cohorts based on the expression
levels of the gene signatures in the selected 610 cases (Figure
S9A-B). The cutoff values were determined by Equation 1,2.
We selected samples with simultaneous high expression of
E gene signature and low expression of M gene signature as
the E cohort. Conversely, samples with simultaneous low ex-
pression of E gene signature and high expression of M gene
signature were chosen as the M cohort. This was done to min-

imize the risk of selecting E and M signatures that contained
hybrid E/M intermediate phenotypes (46–48).

CE = E +‡E (1)

CM = M +‡M (2)

where CE and CM are the cutoff values of E and M cohorts
respectively, E and M are the mean expressions of E and M
gene signatures respectively, ‡E , and ‡E are the standard de-
viations of E and M gene signature expressions respectively.

Identification of PDCD1 high and low expression co-
horts. After distinguishing the E and M cohorts, we calculate
the median of PDCD1 gene expression in these two cohorts
as the cutoff value (Figure S9D). Subsequently, we further
divide the E and M cohorts into high and low groups based
on PDCD1 expression.
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