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Abstract1

Reliable prediction of T cell specificity against antigenic signatures is a formidable2

task, complicated primarily by the immense diversity of T cell receptor and antigen3

sequence space and the resulting limited availability of training sets for inferential4

models. Recent modeling efforts have demonstrated the advantage of incorporating5
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structural information to overcome the need for extensive training sequence data, yet6

disentangling the heterogeneous TCR-antigen structural interface to accurately pre-7

dict the MHC-allele-restricted TCR-peptide binding interactions remained challeng-8

ing. Here, we present RACER-m, a coarse-grained structural template model leverag-9

ing key biophysical information from the diversity of publicly available TCR-antigen10

crystal structures. We find explicit inclusion of structural content substantially reduces11

the required number of training examples for reliable prediction of TCR-recognition12

specificity and sensitivity across diverse biological contexts. We demonstrate that our13

structural model capably identifies biophysically meaningful point-mutants that affect14

overall binding affinity, distinguishing its ability in predicting TCR specificity of point15

mutants peptides from alternative sequence-based methods. Collectively, our approach16

combines biophysical and inferential learning-based methods to predict TCR-peptide17

binding events using sparse training data. Its application is broadly applicable to stud-18

ies involving both closely-related and structurally diverse TCR-peptide pairs.19

1 Introduction20

T cell immunity is determined by the interaction of a T cell receptor (TCR) with anti-21

genic peptide (p) presented on the cell surface via major histocompatibility molecules22

(MHCs) [1]. T cell activation occurs when there is a favorable TCR-pMHC interac-23

tion and, for the case of CD8+ effector cells, ultimately results in T cell killing of the24

pMHC-presenting cell [2]. T cell-mediated antigen recognition confers broad immu-25

nity against intracellular pathogens as well as tumor-associated antigenic signatures26

[3]. Thus, a detailed understanding of the specificity of individual T cells in a reper-27

toire comprised of many (⇠ 108) unique T cell clones is required for understanding and28

accurately predicting many important clinical phenomena, including infection, cancer29

immunogenicity, and autoimmunity.30

Due to the immense combinatorial complexity of antigen (⇠ 1013) and T cell (⇠31
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1018) sequence space, initial conceptual process in the field was made by studying32

simple forms of amino acid interactions, motivated either by protein folding ideas [4,33

5] or random energy approaches [6, 7]. Recent advances in high-throughput studies34

interrogating T cell specificity [8, 9, 10] together with the development of statistical35

learning approaches have finally enabled data-driven modeling as a tractable approach36

to this problem. Consequently, a number of approaches have been developed to predict37

TCR-antigen specificity [11, 12, 13, 14, 15]. A majority of developed approaches38

input only TCR and pMHC primary sequence information. The persistent challenge39

with this lies in limited training data given that any reasonable sampling of antigens40

and T cells, or indeed even an entire human T cell repertoire, represents a very small41

fraction of sequence space. As a result, many models under-perform on sequences that42

are moderately dissimilar from their nearest neighbor in the training set, an issue we43

refer to as global sparsity.44

While global sparsity complicates inference extension to moderately dissimilar45

antigens, another distinct challenge exists for reliably predicting the behavior of closely46

related systems that differ by a single amino acid substitution, which we refer to as lo-47

cal resolvability. These ‘point-mutated’ systems require predictive methods capable of48

quantifying the effects of single amino acid changes on the entire TCR-peptide inter-49

action, a task often limited by lack of sufficient training examples required for reliable50

estimation of the necessary pairwise residues. Instead, a modeling framework aiming51

to discern such subtle differences between point-mutants may benefit from learning the52

general rules of amino acid interactions at the TCR-peptide interface and their varied53

contributions to binding affinity. Resolving this very particular problem - discerning54

relevant point-mutations in self-peptide and viral antigens - promises significant ther-55

apeutic utility in targeting cancer neoantigens, optimally selecting immune stem cell56

transplant donors, and predicting the immunological consequences of viral variants.57

Thus local resolvability represents a distinct learning task wherein detailed reliable pre-58
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dictions need to be made on many small variations around a very specific TCR-pMHC59

system.60

Several structure-based approaches have also been used to better understand TCR-61

pMHC specificity. Detailed structural models that focus on a comprehensive descrip-62

tion of TCR-pMHC interaction, including all-atom simulation and structural relax-63

ation, are computationally limited to describing a few realized systems of interest64

[16, 17]. Another strategy develops an AlphaFold-based pipeline to generate accurate65

3-dimensional structures from primary sequence information to improve the accuracy66

of TCR-pMHC binding predictions for hundreds of systems [18]. A previous hybrid67

approach [14] utilized crystal structural data together with known binding sequences to68

train an optimized binding energy model for describing TCR-pMHC interactions. This69

approach offered several advantages, including the ability to perform repertoire-level70

predictions within a reasonable time, along with a reduced demand for extensive train-71

ing data. However, this model largely focused on a restricted set of peptide or TCR72

systems using a single MHC-II structural template and did best in explaining mouse73

I-Ek-restricted systems. Thus, its ability to make reliable predictions for a structurally74

diverse collection of TCR and peptide pairs with a conserved human leukocyte antigen75

(HLA) allele restriction remains unknown.76

Here, we leverage all available protein crystal structures of the most common hu-77

man MHC-I allele variant - HLA-A*02:01 - to develop a combined sequence-structural78

model of TCR-pMHC specificity that features biophysical information from a diversity79

of known structural templates. We quantify the structural diversity in available crystal80

structures of TCR-pMHC complexes[19, 20, 21], and demonstrate that incorporating a81

small subset of available structural information is sufficient to enable reliable predic-82

tions of favorable interactions across a diverse set of TCR-antigen pairs. Our results83

further suggest that the availability of structural information having close proximity to84

the true structure of a TCR-pMHC system can ameliorate both global sparsity and local85
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resolvability in discerning the immunogenicity of diverse and point-mutated antigenic86

variants.87

2 Results88

Model development and identification of TCR-peptide pairs with89

structural templates90

We build on our previous RACER framework developed primarily on the mouse MHC-91

II I-Ek system [14]. Our new approach, termed RACER multi-template (RACER-92

m), represents a comprehensive pipeline that leverages published crystal structures of93

known human TCR-pMHC systems. The training data include every available HLA-94

A*02:01-restricted system with a published structure [PDB/IEDB] of the TCR-pMHC95

complex along with their corresponding peptide and TCR variable CDR3↵ and � se-96

quences. All associated publications linked to each crystal structure were culled for97

known strong and weak binding TCR-peptide sequences. Lastly, we included all98

unique HLA-A*02:01-restricted reads from the ATLAS database [19] comprised of99

TCR-pMHC systems with reported binding affinity data. In total, 163 unique TCR-100

peptide pairs and 66 structural templates were identified for training and validation101

(see Supplementary Data).102

We next assessed the structural diversity of training templates by pairwise evalua-103

tion of structural similarity using a previously developed method referred to as mutual104

Q [22, 23]. Mutual Q similarity defines a structural distance metric consisting of a sum105

of transformed pairwise distances between each residue in two structures normalized106

within the range of 0 to 1, which was then used to perform hierarchical clustering. We107

found that the identified structural clusters largely partition TCR-pMHC systems ac-108

cording to immunological function (for example, systems sharing a conserved antigen)109

with a few exceptions (Fig. 2A). Despite our focus only on a specified HLA-restricted110
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repertoire, the analysis nonetheless revealed significant clustering heterogeneity across111

all included systems: In some cases (e.g. MART-1, TAX), substantial heterogeneity112

was observed and associated with significant pairwise dissimilarity of TCR and pep-113

tide sequences. This, together with cross-cluster structural diversity, is a consequence114

of global sparsity given limited observed structures. On the other hand, we also identi-115

fied structurally homogeneous clusters comprised of TCR-pMHC systems possessing116

near-identical pairwise sequence similarity (e.g. 1E6), yet these systems have substan-117

tial differences in binding affinity, consistent with earlier predictions [6, 7]. This simul-118

taneous manifestation of global sparsity and local resolvability amongst TCR-peptide119

systems with identical HLA restriction represents a dual challenge for the development120

of robust predictive models of TCR-peptide specificity.121

Given the inter-cluster structural diversity for TCR-pMHC complexes as well as122

the intra-cluster variability, it is necessary to suitably select a list of structures with123

sufficient coverage of the identified structural clusters as training data for the model124

and structural templates for test cases. In particular, we hypothesized that our hybrid125

structural and sequence-based methodology could benefit from the inclusion of multi-126

ple template structures, and the modeling approach presented here was developed with127

this motivation in mind.128

The flow chart in Fig. 1 illustrates the training (top row) and testing (bottom row)129

algorithm in RACER-m. For training, contact interactions between peptide and TCR130

were calculated for each of the strong binding systems with available TCR-pMHC crys-131

tal structures. Here, contact interactions were defined by a switching function based132

on the distance between structural residues and a characteristic interaction length (see133

Methods). For each strong binder, 1000 decoy (weak binder) systems were generated134

by pairing the original TCR with a randomized version of the peptide. Contact inter-135

actions derived from the topology of known TCR-pMHC structures, together with a136

pairwise 20-by-20 symmetric amino acid energy matrix, determine total binding en-137
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ergy. Each value of the energy matrix corresponds to a particular contribution by an138

amino acid combination, with negative numbers corresponding to attractive contacts.139

The training objective aims to select the energy matrix that maximizes separability140

between the binding energy distributions of strong and weak binders.141

In the testing phase, a sequence threading methods is employed to construct 3D142

structures for testing cases that lack a solved crystal structure. Here, constructed struc-143

tures are based on using a chosen known template with shortest (CDR3↵/� and pep-144

tide) sequence distance to the specific testing case. Using the constructed 3D structure,145

a contact interface can be similarly calculated for each testing case, and 1000 decoy146

weak binders can be generated by randomizing the peptide sequence. The optimal en-147

ergy model is then applied to assign energies to the testing system and decoy binders,148

and the testing system is identified as a strong binder if its predicted binding energy is149

significantly lower than the decoy energy distributions based on a standardized z score.150

Here, z score calculation was adopted from the statistical z-test applied to the predicted151

binding energy of test systems and decoy weak binders, the latter of which were used152

as a null distribution to compare against a given test binder. The z score of binding153

energies is defined as z = (Ēdecoy � Etest)/�decoy, where Ēdecoy is the average pre-154

dicted binding energy of decoy weak binders, Etest is the predicted binding energy of155

the testing system, and �decoy is the standard deviation of the binding energies of de-156

coy weak binders. Testing systems having z scores exceeding 1 are considered strong157

binding.158

Structural information enhances recognition specificity of pMHC-159

TCR complexes160

RACER-m was developed to explicitly leverage the available structural information ob-161

tained from experimentally determined TCR-pMHC complexes for predictions of test-162

ing cases. While a prior modeling effort [14] relied on a single structural template for163
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both training and testing and achieved reasonable results given reduced training data,164

structural differences became prominent as the testing data expanded to include addi-165

tional TCR and peptide diversity, which resulted in reduced predictive utility. Structural166

variation has been previously observed and quantified in high molecular detail [24, 25]167

using docking angles [26] and interface parameters.168

For HLA-A*02:01 TCR-pMHC systems, the docking angles1 ranged from 29� to169

73.1�, while the incident angle varied from 0.3� to 39.5� degrees [24, 25, 27]. The170

observed structural differences among different TCR-pMHC complexes suggest that a171

single TCR-pMHC complex structure may not accurately represent the contact inter-172

faces of other TCR-pMHC complexes, particularly those with substantially different173

docking orientations. These distinct docking orientations lead to large variations in the174

contact interfaces between peptide and CDR3↵/� loops, which can be observed from175

the diversity in contact maps as shown in Fig. S1. RACER-m overcomes this limita-176

tion by the inclusion of 66 TCR-pMHC crystal structures, which are distributed over177

distinct structural groups, including MART-1, 1E6, TAX, NLV, FLU and serve as both178

the training dataset and reference template structures for testing cases.179

In testing TCR-peptide pairs, all corresponding crystal structures were omitted180

from predictions. Thus, selecting an appropriate template from available structures181

became crucial for accurately reconstructing the TCR-pMHC interface and estimat-182

ing the binding energy. To accomplish this, RACER-m assumed that high sequence183

similarity corresponds to high similarities in the structure space, which is supported184

by the correlation between mutual Q score and sequence similarity measured from185

the 66 solved crystal structures of TCR-pMHC complexes (Fig. S2). This assump-186

tion was implemented by calculating sequence similarity scores of the testing peptide187

and TCR CDR3↵/� sequences with those of all 66 reference templates. In each case,188

a position-wise uniform hamming distance on amino acid sequences was calculated189

1The docking angle is the angle between the peptide binding groove on the MHC and the vector between
the TCR domains, the latter is calculated using the centroids of the conserved disulfide bonds in each domain.
This angle corresponds to the twist of the TCR over the p-MHC.
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to quantify the similarity. The sum of CDR3↵ and � similarities generated the TCR190

similarity score, and a composite score was created by taking the product of peptide191

and TCR scores (see Methods). The template structure having the highest sequence192

similarity was then selected as the template for threading the sequences of the testing193

TCR-peptide pair.194

To evaluate the extent to which the RACER-m approach can address global spar-195

sity by accurately recapitulating observed specificity in the setting of limited training196

data, we trained a model using 42.3%2 of the total experimentally confirmed strong197

binders, which sparsely cover all the structural groups involved in the mutual Q analy-198

sis shown in Fig. 2A. The remaining 57.7% of TCR-peptide sequences that lack solved199

structures were utilized as testing cases to validate the sensitivity of the trained energy200

model. RACER-m effectively recognizes strong binding peptide-TCR pairs and cor-201

rectly predicts 98.9% of the testing systems using the criteria that z-score is greater202

than 1. Amongst the 94 testing systems, only one TCR-peptide pair in the TAX struc-203

tural group was mis-predicted as a weak binders with a binding energy deviating from204

the average binding energies of decoy weak binders by 0.64�, where � is the standard205

deviation of the decoy energies. These initial results (Fig. 2) confirm that the model206

is effectively able to learn the specificity rules from TCR-pMHC systems exhibiting207

distinct structural representations.208

While the reliable identification of strong-binding systems is clinically useful and209

one important measure of model performance, simultaneous evaluation of model speci-210

ficity is equally crucial for generating useful predictions on the level of a TCR reper-211

toire. To evaluate the specificity of a global sparsity task, we next tested RACER-212

m’s ability to discern experimentally confirmed weak-binding systems. We selected213

peptides or TCRs from the most abundant structural groups (MART-1 and TAX) in214

the training set to create ‘scrambled’ systems by cross-cluster mismatching of either215

2In addition to the 66 crystal structures of HLA-A*02:01 TCR-pMHC systems, 3 strong binders (PDB:
3GSR, 3GSU, and 3GSV) of NLV peptide with solved pMHC structures were also included in the training
set. See Supporting Methods for details.
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TCRs or peptides (see Methods for full details). Proceeding in this manner enables216

a specificity test on biologically realized sequences instead of randomly generated217

ones. Specifically, every peptide selected from a given structural group (e.g. peptide218

EAAGIGILTV in the MART-1 group) was mismatched with a list of TCRs specific219

for peptides belonging to other groups (e.g. TAX, 1E6, FLU, etc.) to form a set of220

scrambled weak binders.221

Following our aforementioned testing protocols, we next calculated z-scores for222

these mismatched interactions, which were then compared to correctly matched sys-223

tems with the same peptide sequence (e.g. EAAGIGILTV). We also conducted the224

complementary test on TCRs using scrambled peptides. The primary advantages of225

this approach include 1) the ability to match amino acid empirical distributions in bind-226

ing and non-binding pairs, and 2) utilization of realized TCR sequences for specificity227

assessment instead of random sequences that possess minimal if any overlap with phys-228

iological sequences.229

A representative example of these tests utilizing the MART-1 epitope and MART-230

1-specific TCRs is given in Fig. 3. First, 7 sets of weak binders were constructed by231

mismatching 36 MART-1-specific TCRs each with 7 non-MART-1 peptides sampled232

from distinct clusters. We applied RACER-m on each weak binder to predict its bind-233

ing energy, then compared this value to the distribution of decoy binding energies to234

obtain a binding z score. z scores of mismatched weak binders, together with those of235

correctly matched MART-1-TCR strong binders, were used to derive the receiver op-236

erating characteristic (ROC) curve (Fig. 3A, Fig. S3). The area under the curve (AUC)237

was greater than or equal to 0.98 for 5 out of 7 test sets, while the others had AUCs of238

0.80 and 0.75, illustrating RACER-m’s ability to successfully distinguish strong bind-239

ing peptides from mismatched ones in the available MART-1-specific TCR cases.240

An analogous test was performed on the 5 available peptide variants from the241

MART-1 structural group by mismatching them with 35 TCR sequences contained242
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in the NLV, FLU, 1E6 or TAX clusters. Relative to the binding energies of correctly243

matched MART-1-specific TCRs, RACER-m performs well in discerning matched vs244

mismatched TCRs for 4 out of the 5 tested MART-1 peptides (Fig. 3B, Fig. S4), the245

one initial exception being peptide ELAGIGILTV. Further inspection of the TCRs in246

this group revealed that the TAX-specific TCR A6 (triangle sign in Fig. 3C) together247

with several closely associated point mutants had a z score distribution resembling that248

of the RD1-MART1High TCR and its associated point mutants (Fig. S4E). This could249

be explained by the fact that the RD1-MART1High TCR was engineered from the A6250

TCR to achieve MART-1 specificity [28], wherein A6 was selected because of its simi-251

larity with MART-1 specific TCRs in the V ↵ region and similar docking mode [28, 29].252

However, the engineered (RD1-MART1High) TCR is no longer specific to the TAX253

peptide (LLFGYPVYV), which is consistent with the z scores predicted from RACER-254

m. Indeed, when the A6-specific TAX peptide is paired with RD1-MART1High TCR,255

a relatively lower z score (cross sign in Fig. 3C) is predicted in comparison with the z256

scores from strong binders (violin shape in Fig. 3C) of the same peptide.257

Evaluation on extended datasets highlights the added value of struc-258

tural information259

Given RACER-m’s performance on the ATLAS data, we then applied the model to260

additional datasets to further validate its ability in the setting of global sparsity. The 10x261

genomics [30] dataset details many TCR-peptide binders collected from five healthy262

donors. HLA-A*02:01-restricted samples in this dataset include 23 unique peptides,263

and the number of TCRs specific for each peptide varied from 8365 (e.g. GILGFVFTL)264

to 1 (e.g. ILKEPVHGV). We remark that the diversity of HLA-A*02:01 samples was265

significantly reduced to 1741 systems having unique CDR3↵/� and peptide sequences266

after removing redundancies. Importantly, we selected this large dataset as a reasonable267

test since 89.26% of the 1741 testing systems did not share either the same CDR3↵ or268
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CDR3� sequence in common with the list of available systems used in the training set,269

and 99.89% of the testing systems did not have the same CDR3↵-CDR3� combination270

with the training set, although 7 out of the 23 peptides were shared with the training271

set.272

Given this relative lack of overlap with our training data, we applied RACER-m to273

all unique HLA-A*02:01 pairs. In a majority (88.9%) of these cases across a large im-274

munological diversity of peptides, RACER-m successfully identifies enriched z scores275

in the distribution of binding TCRs (Fig. 4A). The distinction of TCRs belonging to276

testing vs. training sets, together with the striking difference in the size of training and277

testing systems, suggest that shared structural features were able to augment RACER-278

m’s predictive power on distinct tests. Thus, the inclusion of structural information279

in model training enhances RACER-m’s predictive ability across distinct TCR-pMHC280

tests. There were several cases where RACER-m’s predicted distributions overlapped281

significantly with low z scores, indicating a failed prediction; in these cases we inves-282

tigated whether this could be explained by the lack of an appropriate structural tem-283

plate. A significant positive correlation was observed between a testing case’s optimal284

structural template similarity and the RACER-m-predicted z scores, consistent with a285

decline in model applicability whenever the closest available template is inadequate for286

representing the system in question (Fig. S5). Despite this, the RACER-m approach,287

trained on 69 cases, was able to predict roughly 90% of strong binders contained in288

over 1700 distinct testing cases in the 10x genomics dataset.289

We then compared RACER-m’s performance to NetTCR-2.0 [11], a well-established290

convolutional neural network model for predictions of TCR-peptide binding that is291

trained on over 16000 combinations of peptide/CDR3↵/� sequences. This compari-292

son was performed on a publicly available list of TCR-pMHC repertoires curated by293

Zhang et al. [12] which were mutually independent of RACER-m or NetTCR-2.0 train-294

ing data, wherein we included known strong binders and mismatched weak binders for295
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8 unique peptides of HLA-A*02:01. Since NetTCR-2.0 has a restricted length for296

antigen peptide (no longer than 9-mer), it cannot be applied on testing systems with297

10-mer peptides such as KLVALGINAV and ELAGIGILTV, which are absent from the298

NetTCR-2.0 evaluation in Fig. 4B. The area under the ROC curve (AUROC) was used299

as a standard measure of classification success. In the majority of cases, RACER-300

m outperformed NetTCR-2.0 in diagnostic accuracy with higher ROC values (Fig.301

4B). Lastly, RACER-m was further evaluated using an unrelated set of TCR-pMHC302

data comprised of 400 samples made up of the strong binders and mismatched weak303

binders with 4 peptides and 100 TCRs [31], which also gives us good distributional304

performance (Fig. 4C). In one of the 4 peptides included in this dataset, RACER-m305

seems to have difficulty providing correct classification about strong and weak binders306

for peptide CVNGSCFTV, which could again be explained by the lack of appropriate307

structure templates for this pMHC and related strong binding TCRs (Fig. S6).308

RACER-m specificity of point-mutated variants and preservation of309

local resolvability310

Encouraged by model handling of global sparsity in tests of disparate binding systems311

having high sequence diversity, we next evaluated RACER-m’s ability in maintaining312

local resolvability of point-mutated peptides with near-identical sequence similarity to313

a known strong binder, which represents a distinct and usually more difficult compu-314

tational problem. Understanding in detail which available point mutants enhance or315

break immunogenicity is directly relevant for assessing the efficacy of tumor neoanti-316

gens and T cell responses to viral evolution. Additionally, the performance of structural317

models in accomplishing this task are a direct readout on their utility over sequence-318

based methods, since the latter case will struggle to accurately cluster, and therefore319

resolve, systems having single amino acid differences. To evaluate RACER-m’s ability320

to recognize point mutants, we performed an additional test on an independent compre-321
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hensive dataset of TCR 1E6 containing a point mutagenic screening of the peptide dis-322

played on MHC. This testing set includes 20 strong binders and 73 weak binders [21],323

wherein strong binding to the 1E6 TCR was confirmed by TNF↵ activity. RACER-m324

demonstrates enrichment of the distribution of binding energies for strong binders vs.325

confirmed weak cases (Fig. 5A). ROC analysis of the RACER-m’s ability to resolve326

these groups gives an AUC of 0.78. It is important to note that only 2 strong binders of327

this system were included in the training of RACER-m’s energy model.328

Inspired by these initial results on the 1E6 mutagenic screen, we extended this329

analysis to all point-mutated weak binding systems in the ATLAS dataset, specifically330

those with KD values greater than 200 µM. Our results, presented template-wise for331

each structure in the point-mutant data, demonstrate that RACER-m improves in this332

recognition task when compared to NetTCR-2.0 (Fig. 5C). Lastly, to explicitly explore333

the strength of structural modeling in predicting the impact of small but immunologi-334

cally significant single amino acid differences, we quantified the predicted z scores for335

both strong and weak binders as a function of sequence similarity (Fig. S7). The re-336

sults demonstrate that the inclusion of information from correctly identified structural337

templates enhances RACER-m’s predictive power. Collectively, our results suggest338

that RACER-m offers a unique computational advantage over traditional, sequence-339

only methods of prediction by leveraging significantly fewer training sequences with340

key structural information to efficiently identify the contribution of each amino acid341

change.342

3 Discussion343

Reliable and efficient estimation of TCR-pMHC interactions is of central importance344

in understanding, and thus optimizing, the adaptive immune response. Decoding the345

predictive rules of TCR-pMHC specificity is a formidable challenge, largely owing to346

the extreme sparsity of available training data relative to the diversity of sequences that347
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need to be interrogated in meaningful investigation. We developed RACER-m to aug-348

ment the predictive power of a relatively small number of TCR and epitope sequences349

by leveraging the structural information contained in solved TCR-pMHC crystal struc-350

tures. Our analysis focused on the most common human MHC allele variant, due to351

the abundance of sequence and structural data. Despite this restriction, we observed352

structural heterogeneity underpinning the specificity of various TCR-pMHC systems353

in distinct immunological contexts. Enhancement in predictive accuracy was largely354

driven by the availability of a small list of structural templates, which included 66355

crystal structures of TCR-pMHC complexes from the Protein Data Bank.356

Using our minimal list, together with mutually independent testing systems for357

RACER-m and NetTCR-2.0, we find that our model is able to outperform on both358

detection of strong binders as well as avoidance of weak binders - both representing359

distinct but equally important tasks. We advocate for the inclusion of such mixed360

performative tests for rigorous validation as a necessary and standardized component361

in model evaluation, in addition to model comparisons using testing data that is equally362

dissimilar from the training data included in competing models.363

Intriguingly, incorporation of structural information into the training approach en-364

ables the development of a model that maintains predictive accuracy while dealing with365

both global sparsity and local resolvability, all while requiring substantially reduced366

training sequence data. Our results suggest that a wealth of information is contained in367

the structural templates pertaining to key contributors of a favorable TCR-peptide inter-368

action, wherein conserved features across distinct systems can be learned to mitigate369

global sparsity. Conversely, structural encoding of information pertinent to residues370

whose amino acid substitutions either preserve or break immunogenicity also assists371

RACER-m trained on only a small subset of all possible point-mutagens by identifying372

key contributing positions and residues, thereby preserving local resolvability.373

Moreover, model accuracy correlated directly with the availability of a template374
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having sufficient proximity to the sequences of testing systems. As a result, we an-375

ticipate that RACER-m will improve as more structures become readily available for376

inclusion. Existing computational methods for identifying structural models from pri-377

mary sequence data [18] may provide an efficient method of adding highly informa-378

tive structures into the candidate pool for testing. This, together with identifying the379

minimal sufficient number of distinct structural classes within a given MHC allele re-380

striction remain tasks for subsequent investigation. Our current results suggest this is381

doable given the small number of structures available for explaining the diverse systems382

studied herein. Significantly, the inclusion of only 66 template structure augmented383

RACER-m’s ability to accurately differentiate strong and weak binders when evalu-384

ated with hundreds and even thousands of testing systems. This structural advantage385

was enhanced both by the approach of hybridizing sequence and structural information386

into the training and testing protocols and the availability of templates that shared suffi-387

cient sequence-based similarity to testing cases so that an adequate threading template388

was available.389

4 Methods390

RACER-m Model.391

To predict the binding affinity between a given TCR-peptide pair, we employed a392

pairwise energy model to assess the TCR-peptide binding energy [14]. The CDR3↵393

& CDR3� regions were used to differentiate between different TCRs because CDR3394

loops primarily interact with the antigen peptides while CDR1 and CDR2 interact with395

MHC [32]. However, the binding energy was evaluated based on the entire binding396

interface between TCR and peptide. As illustrated in Fig. 1, we included 66 experi-397

mentally determined TCR-p-MHC complex structures and 3 additional TCR-p-MHC398

complex structures composed of experimentally determined p-MHC complexes with399
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Figure 1: Model architecture of RACER-m. Schematic representation of the training
(top row) and testing (bottom row) processes in RACER-m. 66 Crystal structures of
known strong binders were used as both training set and template structures for the
testing processes, which covers several major clusters of TCR repertoires (MART-1,
TAX, 1E6, NLV, FLU) and other clusters with smaller size.

corresponding TCR structures as strong binders for training an energy model (details400

in Supporting Methods), which was subsequently used to evaluate binding energies of401

other TCR-peptide pairs based on their CDR3 and peptide sequences. Additionally,402

for each strong binder, we generated 1000 decoy binders by randomizing the peptide403

sequence. These 69,000 decoys constitute an ensemble of weak binders within our404

training set.405

To parameterize this energy model, we optimized the parameters by maximizing the406

gap of binding energies between the strong and weak TCR-peptide binders, represented407

by �E in Fig. 1. The resulting optimized energy model will be used for predicting the408

binding specificity of a peptide towards a given TCR based on their sequences. Further409

details regarding the calculation of binding energy are provided below.410
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Figure 2: Performance on ATLAS dataset (A) Mutual Q calculation results between
all crystal structures in training set of RACER-m, which measures the structural simi-
larity between every pair of structures from the training set. The linkage map shows the
hierarchical clustering result based on the pairwise mutual Q values. Color blocks next
to the linkage map indicates the corresponding cluster of the crystal structure in the
row. (B) Predicted binding energies for ATLAS dataset (open circles and closed dots)
in comparison with the binding energies for corresponding weak binders (box plots).
Each open circle represents the predicted binding energy for a structure in the training
set, while each closed dot represents the predicted binding energy for a testing case
from ATLAS dataset. Each training or testing case is associated with 1000 decoy weak
binders generated by randomizing the peptide sequence and pairing with the TCR in
the corresponding training/testing structure. Box plots represents the distribution of the
predicted energies of the decoy weak binders with the box representing the lower (Q1)
to upper (Q3) quartiles and a horizontal line representing the median. The whiskers
extended from the box by 1.5IQR, where IQR indicates the interquartile range.
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Figure 3: Prediction performance on weak binders generated by mismatching pep-
tides with TCRs. (A) ROC curves for RACER-m classification performance on dif-
ferentiating weak binders generated by mismatching peptides from NLV, TAX, FLU
and 1E6 clusters with MART-1 TCRs from MART-1 strong binders with the same set
of TCRs. (B) ROC curves for RACER-m classification performance on distinguishing
MART-1 strong binders from mismatched weak binders generated by pairing MART-1
specific peptides with TCRs from NLV, TAX, FLU and 1E6 clusters. (C) When TAX
A6 TCR is paired with MART-1 peptide ELAGIGILTV, the Z-score of the mismatched
system (triangle) resembles the values from the strong binders (violin shape) formed by
the same peptide and TCR RD1-MART1High and its point mutants, which was engi-
neered from A6. In the reverse scenario, TCR RD1-MART1High shows lower Z-score
(cross) than TAX strong binders (violin shape) when paired with TAX specific peptide
LLFVYPVYV.
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Figure 4: Validate the predictive power of RACER-m with external datasets. (A)
Prediction results of RACER-m on the HLA-A*02:01 restricted systems from 10x Ge-
nomics dataset collected from 5 healthy donors. 1741 unique pairs of TCR-peptide
sequences were tested and the prediction results of z score were grouped by the im-
munological profile of the test systems and depicted as box plots. (B) Comparison of
classification performance between RACER-m and NetTCR-2.0 on a curated list of
public TCR-pMHC repertoires [12] comprised by both strong binders and mismatched
weak binder. Due to the restriction of NetTCR-2.0 on the peptide length (9-mer),
there is no data from NetTCR-2.0 for the two 10-mer peptides (KLVALGINAV and
ELAGIGILTV), (C) The classification performance of RACER-m on another set of
TCR-pMHC test systems [31].
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Figure 5: RACER-m’s performance on differentiating strong binders from point-
mutant weak binders(A) Distribution of z scores from strong binders of 1E6 TCR
and weak binders from point mutagenic screen. (B) ROC curve for RACER-m clas-
sification performance using the strong and point-mutant weak binders for 1E6 TCR.
(C) Comparison of RACER-m and NetTCR-2.0 in classification of strong and point-
mutant weak binders from ATLAS dataset.

Detailed calculation of TCR-peptide binding energies411

To evaluate the binding affinity between a TCR and a peptide, RACER-m utilized412

the framework of the AWSEM force field [33], which is a residue-resolution protein413

force field widely used for studying protein folding and binding [33, 34]. To adapt the414

AWSEM force field for predicting TCR-peptide binding energy, we utilized its direct415

protein-protein interaction component to calculate the inter-residue contacting interac-416

tions at the TCR-peptide interface. Specifically, we utilized the C� atoms (except for417

glycine, where C↵ atom was used instead) of each residue to calculate the contacting418

energy using the following expression:419

Vdirect =
X

i2TCR,j2peptide

�i,j(ai, aj)⇥
I
i,j (1)

In Eq. 1, ⇥i,j represents a switching function that defines the effective range of inter-420

actions between each amino acid from the peptide and the TCR:421

⇥I
i,j =

1

4
(1 + tanh[5.0⇥ (ri,j � rImin)])(1 + tanh[5.0⇥ (rImax � ri,j)]) (2)
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where rImin = 6.5Å and rImax = 8.5Å. The coefficients �i,j(ai, aj) define the strength422

of interactions based on the types of amino acids (ai, aj). The �i,j(ai, aj) coefficients423

are also the parameters that are trained in the optimization protocols described as fol-424

lows.425

Optimization of energy model for predicting the TCR-peptide bind-426

ing specificity.427

To predict the binding specificity between a given TCR and peptide, the energy model428

is trained using interactions gathered from the known strong binders and their corre-429

sponding randomly generated decoy binders. Following the protocol specified in our430

previous paper [14], the energy model of RACER-m was trained to maximize the gap431

between the binding energies of strong and weak binders. In addition, a larger training432

set was used to achieve a more comprehensive coverage of the structural and sequence433

space. Specifically, the binding energies were calculated from individual strong binders434

(Estrong) and their corresponding decoy weak binders (Edecoy) as described in Eq. 1.435

We then calculated the average binding energy of the strong (hEstrongi), the average436

binding energy of the decoy weak binders (hEdecoyi), and the standard deviation of the437

energies of the decoy weak binders (�E).438

To train the model, the parameters �i,j(ai, ai) were optimized to maximize �E/�E,439

where �E = hEdecoyi� hEstrongi, resulting in the maximal separation between strong440

and weak binders. Mathematically, �E can be represented as A|�, where441

A = h�decoyi � h�strongi. (3)

Furthermore, the standard deviation of the decoy binding energies �E can be calcu-442

lated as �E2 = �|B�, where443

B = h�decoy�
|
decoyi � h�decoyih�decoyi|, (4)
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here, � takes the functional form of Vdirect and summarizes interactions between differ-444

ent types of amino acids. Therefore, the vector A specifies the difference in interaction445

strengths for each pair of amino acid types between the strong and decoy binders, with446

a dimension of (1,210), while the matrix B is a covariance matrix with a dimension of447

(210, 210).448

With the definition above, maximizing the objective function of �E/�E can be449

reformulated as maximization of A|�/
p
�|B�. This maximization can be effectively450

achieved through maximizing the functional objective R(�) = A|� � �1
p
�|B�. By451

setting @R(�)/@�| to 0, the optimization process leads to � / B�1A, where � is a452

(210, 1) vector encoding the trained strength of each type of amino acid-amino acid453

interactions. For visualization purposes, the vector � is reshaped into a symmetric 20-454

by-20 matrix, as shown in Fig.1. Additionally, a filter is applied to reduce the noise455

caused by the finite sampling of decoy binders. In this filter, the first 50 eigenvalues456

of the B matrix are retained, and the remaining eigenvalues are replaced with the 50th457

eigenvalue.458

Construction of target TCR-p-MHC complex structures from se-459

quences.460

Since RACER-m calculates the binding energy based on the interaction contacts be-461

tween a given peptide and a TCR, it relies on the 3D structure of the TCR-p-MHC462

complex for contact calculation. Although the training data include a 3D structure for463

each of the TCR-peptide strong binders, we usually lack 3D structures for most of the464

testing cases. To address this limitation, we used the software Modeller [35] to con-465

struct a structure based on the target peptide/CDR3 sequences in the test system and a466

template crystal structure selected from the training set.467

Specifically, for each testing system, a position-wise uniform Hamming distance468

was computed between the target sequence and each of the sequences from the 66469
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training strong binders with complete TCR-p-MHC complex structures, separately for470

peptide, CDR3↵, and CDR3� regions. Then, sequence similarity scores were assigned471

to peptide, CDR3↵, and CDR3�, respectively with the number of amino acids that472

remain the same between target and template sequences. To calculate a composite473

similarity score for the target TCR-peptide complex, we summed the similarity scores474

of the CDR3↵ and � regions and multiplied this sum by the peptide similarity score.475

The template structure with the highest similarity score was selected as the template476

for the subsequent sequence replacement using Modeller (Fig. 1 bottom).477

To perform the sequence replacement, the peptide, CDR3↵, and CDR3� sequences478

in the template structure were replaced with the corresponding target sequences in the479

testing TCR-peptide system. The location of the target sequence in the template struc-480

ture was determined by aligning the first amino acid of the target sequence with the481

original template sequence. If the two sequences had different lengths, the remaining482

locations were patched with gaps. This sequence alignment and the selected template483

structure were then used as input for Modeller to generate a new structure. The con-484

structed structure was then used for the estimation of the binding energy of the testing485

system.486

Generation of weak binders by mismatching sequences of known487

TCR-peptide pairs488

To test the performance of RACER-m in distinguishing strongly bound TCR-peptide489

pairs from weak binders, we generated a set of weak binders by introducing sequence490

mismatches between the peptides and TCRs from the known strongly bound TCR-491

peptide pairs. As shown in Fig. 2, the strong binders were grouped based on their492

immunological systems, such as MART-1 and TAX. It is important to note that pairs493

within the same group also share similar TCR-peptide structural interfaces.494

To generate the weak binders, we mismatched the sequences of peptides and the495
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CDR3↵/� pairs from different groups. For example, 36 pairs of MART-1 specific496

CDR3↵/� sequences were mismatched with 7 non-MART-1 peptides to form weak497

binders for Fig. 3A, while 5 MART-1 specific peptides were mismatched with 35498

pairs of non-MART-1 CDR3↵/� sequences to form weak binders in Fig. 3B. The499

newly generated combinations of sequences were then used to create 3D structures of500

the TCR-p-MHC complexes, following the protocol specified in Section Constructing501

TCR-p-MHC complex structure from sequence.502

Mutual Q calculation.503

To quantify the structural distances between the 66 crystal structures of TCR-p-MHC504

complexes, a pairwise mutual Q score was used to calculate the structural similarity505

between every pair of the 66 structures. Since our focus is on the contact interface be-506

tween the peptide and the CDR3↵/CDR3� loops of the TCR, the mutual Q score was507

computed between these regions. We adopted a similar protocol used in [22] and cal-508

culated the mutual Q score between structures A and B with the following expression:509

QA,B = c
X

i2peptide,j2CDR3

exp

"
�
�
rAij � rBij

�2

2�2

#
(5)

where i and j are indices of atoms from the peptide and CDR3 loops, respectively.510

rAij and rBij denote the contact distances between atom i and j in structure A and B511

respectively. For simplicity, � was set as 1 Å instead of using the sequence distance512

between i and j as done in [22]. The coefficient c normalizes the value of Q to fall513

within the range of 0 and 1. This definition ensures that a larger value of Q indicates a514

greater structural similarity between the two systems.515
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Prediction protocols with NetTCR-2.0.516

To test the predictive performance of RACER-m, we compared the prediction accuracy517

of RACER-m with NetTCR-2.0, another widely used computational tool trained with518

a convolutional neural network model, as described by Montemurro et al. [11]. To en-519

sure a fair comparison, we retrained the NetTCR-2.0 model with the paired alpha beta520

dataset with a 95% partitioning threshold (file train ab 95 alphabeta.csv, provided in521

https://github.com/mnielLab/NetTCR-2.0). The trained model was then used to clas-522

sify the strong and weak binders, as shown in Fig. 5C. Due to the peptide length re-523

striction in the application of NetTCR-2.0, we excluded peptides longer than 9 residues524

from our testing prediction.525
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1 Supporting Methods

1.1 Training data selection for RACER-m.

The RACER-m training set consists of TCR-p-MHC complex structures restricted to the HLA-

A*02:01 allele, collected from the Protein Data Bank, which initially comprises 66 complex struc-

tures. However, it was observed that when trained on these 66 structures, RACER-m systematically

underestimated the binding affinities of strong binders specific to NLV peptides and their variants.

To address this issue, we incorporated three additional structures of strong binders from [1]in which

6 strong binders were reported when combining NLV variants with TCR RA14 and 3 of them were

provided with p-MHC structures. By combining these p-MHC structures with TCR RA14 to form

the TCR-p-MHC complex structure and adding them as supplementary training cases, we expanded

the training set to a size of 69. The inclusion of these three NLV strong binders effectively resolved

the systematic underestimation problem concerning the predictions of NLV-specific strong binders,

while preserving the excellent predictive power for other strong binders in the ATLAS dataset.

1.2 Collection of point-mutant weak binders for 1E6.

To test the performance of RACER-m in terms of discerning strong binders from point-mutant

weak binders, we collected point-mutant weak binders from a comprehensive peptide-mutagenesis

study by Bulek et al. [2]. Through the mutational scan, Bulek et al. assessed the impact of point-

mutations on the binding of peptide ALWGPDPAAA to the 1E6 TCR with the tumor necrosis factor

(TNF). Since it was pointed out that the 1E6 TCR was tolerant to changes in peptide residues Ala1,

Leu2, Ala8, Ala9 and Ala10 [2], we collected point-mutations at positions 3 to 7 with TNF equal

or smaller than 25, and considered them as point-mutant weak binders for 1E6.

2 Supporting Figures
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Figure S1: Contact maps of crystal structures 3QDG, 3UTT and 1OGA. Each contact map

was calculated by measuring the proximity Wi,j between each residues of peptide (residue i) and

CDR loops (residue j) based on their mutual distance (d) using a smoothed step function: Wi,j =

(1� tanh(d� dmax))/2, where dmax = 8.5Å. Only C� atoms were used for the mutual distance

calculation (except for glycine, where the C↵ atom was used).
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Figure S2: Relationship between structure and sequence similarities of TCR-pMHC com-

plexes.
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Figure S3: Comparison of predicted z-scores between strong binders of MART-1 (blue) and

weak binders (orange) generated by mismatching MART-1 TCRs with peptides from 1E6,

TAX, NLV, and FLU.
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Figure S4: Comparison of predicted z-scores between strong binders of MART-1 (grey) and

weak binders (red, green, orange, and brown) generated by mismatching MART-1 peptides

with TCRs specific to 1E6, TAX, NLV, and FLU.
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Figure S5: Z score vs. optimal sequence similarity score for 10x genomics dataset. [3, 4]

Figure S6: Z score vs. optimal sequence similarity score for dataset from Grant et al. [5].

8



! "

# $

Figure S7: Z score vs. optimal sequence similarity score for point-mutant weak binders in

comparison with strong binders from ATLAS dataset [6].
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