
PHYSICAL REVIEW E 106, 014406 (2022)
Editors’ Suggestion

Contact map dependence of a T-cell receptor binding repertoire

Kevin Ng Chau
Physics Department, Northeastern University, Boston, Massachusetts 02115, USA

Jason T. George *

Center for Theoretical Biological Physics, Rice University, Houston, Texas 77005, USA

José N. Onuchic
Center for Theoretical Biological Physics and Departments of Physics and Astronomy, Chemistry and Biosciences,

Rice University, Houston, Texas 77005, USA

Xingcheng Lin
Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA

Herbert Levine
Center for Theoretical Biological Physics and Departments of Physics and Bioengineering,

Northeastern University, Boston, Massachusetts 02115, USA

(Received 5 January 2022; accepted 10 June 2022; published 27 July 2022)

The T-cell arm of the adaptive immune system provides the host protection against unknown pathogens by
discriminating between host and foreign material. This discriminatory capability is achieved by the creation of
a repertoire of cells each carrying a T-cell receptor (TCR) specific to non-self-antigens displayed as peptides
bound to the major histocompatibility complex (pMHC). The understanding of the dynamics of the adaptive
immune system at a repertoire level is complex, due to both the nuanced interaction of a TCR-pMHC pair
and to the number of different possible TCR-pMHC pairings, making computationally exact solutions currently
unfeasible. To gain some insight into this problem, we study an affinity-based model for TCR-pMHC binding in
which a crystal structure is used to generate a distance-based contact map that weights the pairwise amino
acid interactions. We find that the TCR-pMHC binding energy distribution strongly depends both on the
number of contacts and the repeat structure allowed by the topology of the contact map of choice; this in
turn influences T-cell recognition probability during negative selection, with higher variances leading to higher
survival probabilities. In addition, we quantify the degree to which neoantigens with mutations in sites with
higher contacts are recognized at a higher rate.
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I. INTRODUCTION

One of the major components of the human immune sys-
tem consists of a large repertoire of T lymphocytes (or T
cells). Each T cell carries a particular T-cell receptor (TCR)
capable of binding to a specific antigen in the form of a
peptide (p) displayed by major histocompatibility complex
(MHC) molecules (pMHC) on the surface of host cells [1–4].
The activation of the T-cell response depends on the strength
[5], and possibly kinetics [6], of this TCR-pMHC binding
[7,8]. A typical repertoire of a healthy individual consists of
∼107 distinct clonotypes, each with a unique TCR [9]. A
growing body of research has been focused on understanding
the systems-level interactions between the T-cell repertoire
and its recognition of peptide landscapes indicating foreign
or cancer threats.

A critical feature of a properly functioning immune system
is its ability to discriminate healthy cells of the host from those

*Present address: Department of Biomedical Engineering, Texas
A&M University, College Station, Texas 77843, USA.

infected by pathogens, reacting to the latter ones while toler-
ating the former ones. In order to achieve the aforementioned
discrimination, T cells must survive a rigorous selection pro-
cess in the thymus before being released into the bloodstream.
The first step in this process, called positive selection, ensures
that TCRs in thymocytes (developing T cells) can adequately
interface with pMHCs. Positive selection occurs in the thymic
cortex, where cortical epithelial cells present self-peptides
to thymocytes. As long as a thymocyte is able to interface
with some presented pMHC, it receives a survival signal and
migrates inward to the thymic medulla. This step ensures that
the thymocyte has a properly functioning TCR, a rare event
as only about 7–35% [10] of thymocytes survive this step. In
the inner medulla, they encounter thymic medullary epithelial
cells. Here, surviving immature T cells are again presented
with a diverse collection of ∼104 self-peptides [11,12] repre-
senting a variety of organ types. T cells binding too strongly
to any self-peptide die off in a process known as negative
selection [13,14].

As already pointed out, a key ingredient in the aforemen-
tioned process as well as in any subsequent recognition of
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a foreign antigen by a T cell is the molecular interaction of
the TCR and the pMHC molecules. Crystal structures of TCR
bound to pMHC show that the interface of the TCR-pMHC
interaction is complex, with TCR complementarity determin-
ing regions 1 and 2 (CDR1 and CDR2, respectively) primarily
binding to the MHC molecule, whereas the CDR3 com-
plex mainly contacts the peptide in the MHC’s cleft [15,16].
The CDR3 complex is comprised of two loops, CDR3α and
CDR3β. Baker et al. showed that these loops can exhibit spa-
tial and molecular flexibility during the TCR-pMHC binding
process [17]; moreover, the same TCR can bind to different
pMHCs [18], for example to a pMHC with a point-mutated
peptide [16]. This can involve subtle changes in the CDR3
complexes’ spatial conformation. It is clear then that the intri-
cacies of the TCR binding to the pMHC as a dynamic process
remain as yet to be fully understood.

In lieu of a complete first-principles understanding, several
groups have pioneered the idea of employing relatively simple
models so as to get a sense of how negative selection affects
the T-cell repertoire. In the original set of models, TCRs and
peptides were represented as strings of amino acids (AAs)
which interacted in a manner that did not incorporate any
structural information. In one such set of models, each AA in
the pMHC binding pocket interacted with, and only with, the
complementary AA in the TCR CDR3 complex. This interac-
tion was described by either one or a set of 20 × 20 matrices
[19–23]. These works indeed have provided a framework for
describing how selection shapes the discrimination ability of
the T-cell repertoire, and have been applied to understanding
HIV control [24] and for assessing the detectability of cancer
neoantigens [22]. In a more recent study, Chen et al. [25]
introduced nonuniform interaction profiles that translated into
some AAs in the TCRs having a more pronounced effect in
pMHC recognition, but did not consider how these nonunifor-
mities could vary between TCRs, as shown by existing crystal
structures.

In this paper, we introduce the idea of a crystal-structure-
dependent contact map that weights the binding energies
based on the distance separating the residues on the AAs. A
contact map can be thought of as a specific template for a
class of TCR interface with the pMHC (TCR-pMHC) inter-
actions, which then will yield an actual binding energy once
we specify the specific AA strings on the two molecules. To
focus attention on the role of the contact map, we use a simple
random energy model which assigns a fixed random energy
to each of the possible AA pairs. Our model, described in
detail below, can be thought of a more realistic version of
the the random interaction between cell receptor and epitope
(RICE) model [22], in which contact map effects were simply
assumed to decorrelate pair energies at different sites along a
uniform binding surface.

The paper is structured as follows. In Sec. II, we present the
model description along with how crystal-structure-dependent
contact maps are created and also discuss the choice of energy
matrix in the model. In Sec. III, we analyze how the variance
of the TCR-pMHC binding energy PDF is impacted by the
choice of contact map, including the roles of the total number
of contacts and the topology of the contact map. We then
present two applications of the model that are affected by the
choice of contact map: in Sec. IV, we focus on the negative-
selection recognition probability, and in Sec. V, we discuss

the point-mutant recognition probability by T cells that have
survived negative selection. We present our closing remarks
in Sec. VI.

II. CONTACT MAP BASED RANDOM ENERGY MODEL

Our goal is to analyze a model of negative selection in
which the TCR-pMHC interaction exhibits antigen specificity
of T cells dependent both on the AA occurrence and on
the spatial conformation of TCR and pMHC, while retaining
enough simplicity so that it can be studied analytically and
with feasible computations. We represent a TCR t via its
CDR3 loops in the form of a sequence of kt AAs, t = {t (i)}kt

i=1,
and a pMHC q as a sequence of kq AAs, q = {q( j)}kq

j=1. A
symmetric energy coefficient matrix of size 20 × 20, E =
(Enm), has entries Enm that represent the pairwise binding
coefficients between AAs n and m. The binding energy con-
tributions are then assumed to be the product of a contact
map W = (Wi j ), containing the weights Wi j for the interac-
tion between t and q in a given structure, and the coefficient
corresponding to the amino acid interaction. In detail,

U (t, q) = Uc +
∑

i, j

Wi j · Et (i)q( j), (1)

where Uc represents the contribution of the TCR’s CDR1
and CDR2 complexes interacting with the MHC molecule, as
discussed in [19–21,24].

This form of the binding energy in (1) explicitly separates
the effects on the CDR3-pMHC interaction due to spatial con-
figuration from the effects due to the rest of the pair-dependent
factors, assigning the former ones to W and coarsely account-
ing for the latter ones in E. The particular choices for the
contact map W will depend on the specific TCR-pMHC being
used as a template. Also, this formulation does not presuppose
any specific choice for E. We discuss in detail specific choices
of E and W in the sections below.

We highlight that in Eq. (1), the crystal-structure spe-
cific values Wi j dictate which AAs are effectively in contact.
In [25], a similar equation for TCR-pMHC binding affinity
weights energy coefficients with factors f (ci ). However, this
formulation limits TCR AA in position i to only interact with
its corresponding pMHC AA, and can weight energy coeffi-
cients using different interpretations of f (ci ) to accommodate
the average number of contacts of position i found on an
ensemble of crystal structures, but this then abrogates any
capability to account for different interaction pairs for these
different contacts.

A. Contact maps

Crystal structures of TCRs bound to pMHCs show a variety
of spatial configurations. Each one of these can be thought of
as defining a binding template which can be used to determine
the energy of a set of possible pairs. In general, we expect
there to be a small number of possible templates, as a specific
template would presumably be valid for a subset of all pairs;
even then, we must necessarily ignore the small structural
changes seen between the same TCR-pMHC systems that
differ, e.g., by a single AA mutation [16,26–28]. We expect,
based on a recent computational study [29], that this approach
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FIG. 1. The TCR-pMHC interface and contact maps. (a) The CDR3-pMHC interface in the crystal structure of the 2B4 TCR binding to
the MCC/I-Ek complex (PDB ID 3QIB); with the antigen MCC highlighted in green, the CDR3α loop in purple, and the CDR3β loop in
orange. (b) Eight contact maps estimated from four crystal structures, contact maps of the CDR3α-pMHC (CDR3β-pMHC) interfaces in the
top (bottom) row; 3QIB, 3QIU, and 3QIW are MHC class-II restricted, whereas 5C0A is MHC class-I restricted.

will be reasonable if we stick to a fixed MHC allele, as struc-
tures with different alleles can look very different. We will see
this directly in Fig. 1 below. In the calculations reported in this
paper, we typically restrict ourselves to one template.

To derive a contact map from a crystal structure, we
utilize the associative memory, water mediated, structure,
and energy model (AWSEM) [30], developed in the con-
text of protein folding. We use the position of Cβ (Cα in
the case of glycine) atoms to characterize the position of
the residues of the AAs in both the TCRs and pMHCs,
and to use AWSEM’s negative-sigmoid switching function
as the screening weight Wi j in computing the interaction
energy,

Wi j (ri j ) = 1
2 {1 − tanh [η · (ri j − rmax)]}. (2)

Here, ri j is the distance separating the residues at positions i
and j, rmax acts like a cutoff and is the inflection point of Wi j
after which the function vanishes rapidly for ri j > rmax, and
η controls how rapidly this vanishing occurs. We use crystal
structures [see Fig. 1(a)] of TCR bound to pMHC deposited
in the Protein Data Bank (PDB) to determine a list of AAs
in the TCR t and in the pMHC q, and to calculate each dis-
tance ri j , i = 1, . . . , kt , j = 1, . . . , kq. We then compute the
corresponding weights Wi j from (2) and construct the contact
map W = (Wi j ). Given that both CDR3α and CDR3β loops
of the TCR interface with the peptide, we construct a separate
contact map for each of these CDR3-loop-pMHC interactions.

To show how the proposed screening weight given by
(2) derives from different TCR-pMHC crystal structures, we
choose rmax = 9.5 Å and η = 1 Å−1 and focus on four test
cases. For the first three test cases, we use data from Newell
et al. [16] who present three TCR-pMHC crystal structures:
first, of the 2B4 TCR bound to the moth cytochrome c pep-
tide presented by MHC molecule I-Ek (MCC/I-Ek) complex
(PDB ID 3QIB); second, of the 226 TCR bound to MCC/I-Ek

complex (PDB ID 3QIU); and third, of the 226 TCR bound to
the MCC peptide with a glutamate in the p5 position (MCC-

p5E/I-Ek) complex (PDB ID 3QIW). For the fourth case,
we follow Cole et al. [26] who studied the 1E6 TCR bound
to human leukocyte antigen (HLA)-A02 carrying a MVWG-
PDPLYV peptide of the Bacteroides fragilis/thetaiotaomicron
human pathogen (MVW peptide) (PDB ID 5C0A). For sim-
plicity, we will refer to specific crystal structures by their
PDB ID’s, unless further details need to be more precisely
mentioned about the TCR or the pMHC. Note that 3QIB and
3QIU represent different TCRs bound to the same pMHC
complex, whereas 3QIU and 3QIW represent the same TCR
bound to two pMHCs that differ by a single AA mutation in
the peptide sequence. In addition, 3QIB, 3QIU, and 3QIW
share the same mouse MHC class-II restriction and indeed
the same I-Ek MHC-II allele, whereas the 5C0A TCR-pMHC
system is presented on the human HLA A∗02 MHC class-I
allele.

As defined here, contact maps are sensitive to the choice
of distance cutoff. Clearly, the number of contacts in a contact
map for a given crystal structure increases with increasing rmax
values. The contact map of the 3QIB’s CDR3α-pMHC inter-
face is plotted at four different rmax values, from 6.5 to 9.5 Å
in 1 Å increments, while keeping η = 1 Å−1 fixed (see Fig. S1
in the Supplemental Material (SM) [31]). The contact profile
gradually forms with an ever-increasing number of contacts
from about 5 AA pairs in contact at rmax = 6.5 Å, to about
22 AA pairs in contact at rmax = 9.5 Å. For the remainder of
this paper, all contact maps are calculated with rmax = 9.5 Å
and η = 1 Å−1.

The contact maps in Fig. 1(b) correspond to CDR3α-
pMHC interfaces (top row) and CDR3β-pMHC interfaces
(bottom row) from crystal structures 3QIB, 3QIU, 3QIW, and
5C0A. The contact profiles of CDR3α-pMHC are different
from the CDR3β-pMHC contact profiles, as these parts of the
TCR contact different residues on the displayed peptide. The
contact maps consistently represent the physical proximity of
a particular CDR3 loop to a specific portion of the pMHC, as
can be seen in 3QIB’s crystal structure shown in Fig. 1(a),
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wherein the CDR3α loops primarily contact AAs 2–8 and
the CDR3β loops primarily contact AAs 7–12. The detailed
differences among the first three contact maps do capture
slight changes in position-dependent interfacing, even when
comparing contact maps for the same TCR bound to two
pMHCs diverging by peptide single-AA mutation. Different
weights of, for example, position pairs (i, j) = (4, 4), (4, 8),
(6, 4), and (7, 6) are observed when comparing contact maps
of 3QIU and 3QIW in Fig. 1(b) [coordinates in AA pairs are
labeled as (i, j) for t (i) and q( j)]. But, clearly, from a more
coarse-grained perspective, these three can be considered to
fall within one template. Conversely, the fourth map is very
different, as should be expected because it is based on a
different MHC molecule. Our conclusion is that we can use
a single map for a class of possible pairings and thereby learn
about a significant set of contributors to the T-cell repertoire.
We include more contact maps from other crystal structures in
the SM [31] to further support our findings (Figs. S2–S4). In
general, the TCR-MHC pairing (i.e., independent of the spe-
cific peptide) has the most influence on contact map topology,
with mutations or even completely altered antigens giving rise
to rather small changes to the contact map topology as long as
the TCR-MHC pairing remained the same (SM [31], Figs. S2
and S4). A slightly more significant change in topology is ob-
served when different TCRs bind to the same MHC-restricted
molecule even when presenting the same antigen (SM [31],
Fig. S3).

As mentioned in Sec. I, the CDR3 complexes have a nu-
anced interaction with the pMHC. One factor that may impact
this interaction is the size of AA residues, where larger-sized
aromatic AAs can protrude further from the peptide chain
into the other complexes in the TCR-pMHC interface and
hence have a higher proclivity to contacting smaller AAs.
Contact maps can be used to investigate this issue; however,
in analyzing the small sample of crystal structures discussed
in this manuscript, we found no conclusive evidence as to a
unique role for AA size. A more extensive analysis incorpo-
rating more TCR-pMHC crystal structures is needed to make
a definitive claim; this analysis is beyond the scope of this
paper and will be reported upon in future work.

In the remainder of this paper, we will explore the segment
of the repertoire that depends on one template and its corre-
sponding contact map, and determine how the features of that
map affect repertoire properties.

B. Energy matrix

As discussed above, we propose, for the recognition of an
antigen by a T cell, an affinity-based criterion in which the
TCR-pMHC binding energy U (t, q) given in (1) equates to
recognition (evasion) if U (t, q) is above (below) a particular
energy threshold Un. Thus, we need to specify a symmetric
energy coefficient matrix E = (Enm). The first example of
matrix choice was one based primarily on hydrophobicity, as
developed by Miyazawa and Jerningan (MJ) [32] and used
in studies of thymic selection [19,25]. More recent efforts
have focused on developing immune-specific energy matrices
[33]. A recent study [29] used machine learning to derive the
optimal matrix separating strong from weak binders within
a single contact map template; this optimization approach

would lead to a different such matrix for each assumed
template. Here, our interest is in the role of the contact
map and so we have opted for the expedient choice of a
random model where all matrix elements are chosen to be
independent, mean-zero, unit-variance normally distributed
random variables, Emn ∼ N (µ = 0, σ 2 = 1). Note the as-
sumption that the n-m interaction coefficient has the same
value independently of the AAs’ location in the TCR or the
pMHC sequences. Thus, our model is distinct from the RICE
approach [22], which assumed that the spatial location of the
amino acid directly affected the energy coefficient.

The position independence of Emn ignores structural in-
formation such as the specific AA orientation, or to some
extent the size of the residue. That this will be sufficient is
at the moment uncertain, but we note that such approaches
have proven useful in protein folding and related molecular
biophysics computations (see [32]).

III. DISTRIBUTION OF TCR-pMHC BINDING ENERGY

The TCR-pMHC binding energy U (t, q) is the indicator
of the affinity between a T cell and an antigen. When assum-
ing the pairwise AAs’ interaction energies to be independent
Gaussian random variables, U (t, q) in (1) becomes a weighted
sum of these variables with weights given by the contact
map W . Hence, U (t, q) is also a normally distributed random
variable, and since its mean is automatically zero, knowledge
of the variance σ 2

tq of its PDF allows us to fully characterize
how U (t, q) varies as we vary the particular realization of
E. The contact map dependence of U (t, q) has a twofold
impact on the variance of its PDF when compared to the
case of the addition of equal variance random variables (as
in the RICE approach from [22]). On one hand, the total
number of nonvanishing contacts Wi j given by the contact
map directly determines the number of random energies Ei j
contributing to U (t, q), thus increasing σ 2

tq as the number of
nonvanishing Wi j’s increases. On the other hand, the particular
repeat structure of AAs in the TCR sequence and in the pMHC
sequence also influences σ 2

tq, as a particular pair of AAs that
appears multiple times in the energy summation gives rise to a
variance increase. In this section, we explore how the variance
of the PDF of U (t, q) depends on the two aforementioned
factors.

Before proceeding, we must discuss various statistical en-
sembles of interest here. So far, we have focused on varying
the coefficient matrix, thus generating ensemble values for
each specific t, q. However, we imagine that the biophysical
problem is defined by a fixed E, which may be chosen (as
done here) in a random fashion but, as mentioned above, may
be learned from the data as done in other work [29]. Thus, we
are actually interested in the distribution of binding energies
as we vary either the peptide (fixing the TCR), the TCR
(fixing the peptide), or both, as these are what is necessary
to determine the effects of negative selection. To see how to
determine these distributions, we return to the basic equation,

U (t, q) =
kt∑

i

kq∑

j

Wi j · Et (i)q( j), (3)
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where we have limited ourselves to one class of MHC
molecule and hence Uc becomes an irrelevant constant. Also,
we will assume for the purpose of our analysis that Wi j is
either 0 or 1; this is true for all but a very small number of
possible pairs. Finally, we will assume to take the distribu-
tion over AA to be uniform, although it might be useful in
future work to use the known AA distribution in the human
proteome. With these number of assumptions, the mean value
of U (t, q) sampled over the peptide sequence and/or TCR se-
quence constrained to have no repeats is just the sample mean
of drawing a number of values from a mean-zero, variance
σ 2 Gaussian distribution. This number is very much peaked
around zero. Similarly, the mean value of U 2 will be strongly
peaked around the variance times the contact number Nc.
Perhaps not surprisingly, these are the same answers we get
when averaging over E; in other words, as long as we average
over sufficient numbers of sequence choices, the results for all
choices of coefficient matrices are the same; see the SM [31]
(Sec. S8) for a more complete discussion.

Let us now extend this analysis to the more general case.
We introduce the following notation: A pair repeat structure is
denoted as Cp = (lr1

1 , lr2
2 , . . . , lrN

N ), with
∑

ri · li = NC , where
li denotes the number of times an amino acid pair is repeated
in different contacts and ri denotes how many such li repe-
titions there are. For example, for a total of 20 contacts, if
there are three contacts with the same AA pair and two sets
of two contacts with the same AA pair, this would be denoted
as Cp = (3, 22, 113). An extension of the previous argument
allows us to determine the most likely value of the mean
energy and its variance, averaged over all possible peptide and
TCR sequences that do not change the class. The mean is still
zero and the variance now becomes

Var(Cp) = σ 2
∑

ril2
i . (4)

Again, this is exactly the same as the result obtained when
averaging over energy coefficient matrices. A more precise
version of this correspondence is presented in the SM [31]
(Secs. S5 and S6). If one wants to find the total variance,
we have to average over different choices of C weighted by
their respective probabilities of occurrence given the assumed
uniform distribution of residue choice.

We note that while a string model may also contain pair
repeats, the structural topology of the contact map matters
significantly and influences the likelihood of repeated amino
acids. In a string model, the likelihood of repeated AA pairs is
determined by the length of the TCR and pMHC sequences
and by the underlying AA distribution. In the contact map
dependent model, repeated AA pairs are much more likely.
First, there are in general more contacts than can be accom-
modated by a string model. But also, for a given peptide AA
contacting many TCR AAs, there is an increased likelihood
that a repeated AA pair will occur once choices are made for
the interacting TCR AAs. Therefore, the overall probability of
obtaining certain repeat structures is directly dependent on the
contact map topology. This is most evident when comparing
extreme cases, say comparing a diagonal contact map and
a contact map with one row of nonvanishing contacts. The
latter has much higher proclivity to show repeated AA pairs.

All these amount to the repeat structures emerging from the
number of contacts and topology of the contact map of choice.

A. Variance scales with the number of contacts

It is clear from the previous analysis that the variance in
the binding energy distribution increases with NC , the total
number of contacts. It is easy to see from the above that there
are bounds on the total variance,

σ 2NC ! VarU ! σ 2N2
C . (5)

The lower bound comes from the case where all pairs are
distinct, whereas the upper bound arises from assuming that
all contacts are the same AA pair, i.e., C = (NC ). From the
size of the AA alphabet |A|, the total number of AA pairs
(irrespective of ordering) is M = (|A| + 1

2 ). Now, we have just
seen that the precise value of the variance depends on the
exact repeat structure of the peptide (q) and TCR (t) AA
sequences, together with the contact map. In the case where
we wish to obtain the variance of the PDF obtained by varying
both t and q, we can obtain a useful approximation of this
variance by ignoring the exact configuration of W and instead
simply counting the number of times each of the M AA pairs
is selected with equal probability, where there are Nc total
opportunities. In this case, the number of times each AA pair
is realized follows a multinomial distribution, and the variance
can be calculated from the second moment of this distribution
as

Var[U (t, q)|W ] ≈ 1
M

N2
C +

(
1 − 1

M

)
NC . (6)

See the SM [31] (Secs. S5 and S6) for a detailed derivation.
In Fig. 2(a), the variances computed by simulation for the
CDR3α-pMHC interfaces of 3QIB, 3QIU, 3QIW, and 5C0A
[top row of Fig. 1(b)] are presented along with the predicted
variance from (6). As we can see, this approximation captures
the basic dependence on the total number of contacts. In the
SM [31] (Fig. S5), we provide further evidence for this result
by considering the effects of varying the cutoff used in the
definition of the contact matrix.

B. Variance depends on the repeat structures of the TCR
and pMHC AA sequences

If we are looking for the distribution of energies for a fixed
TCR sequence, there is no simple formula that can encompass
the dependence of the variance on the exact TCR sequence
and on the exact contact map. As already mentioned, we have
to find the variance for different possible repeat structures and
then weight them appropriately by their occurrence probabil-
ity. Specifically,

σ 2
t =

NR∑

n=1

pnσ
2
n , (7)

where NR is the total number of different possible structures.
We would like to work out a specific and relatively simple

example to illustrate how this works. To simplify the analysis,
we focus on the 3QIB CDR3α-pMHC contact map W α

3QIB in
Fig. 1(b) (top left) and assume that the TCR is a constant
sequence of a single repeated AA t = (t1, t1, t1 . . . ). Note that
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FIG. 2. The variance of the TCR-pMHC binding energy distribution depends on the total number of contacts and on the repeat structure
allowed by the topology in the contact map. (a) Binding energy U (t, q) variance scaling with the number of contacts, |NC |; calculated variances
with their variance (vertical error bars) were plotted as a function of total contacts |NC | in the contact map. Horizontal error bars represent
the range of threshold used for determining each contact map (lower estimates corresponding to counting contacts >0.9, and upper estimates
corresponding to including contacts >0.1). (b) The binding energy PDFs and corresponding simulated standard deviations (σr , σ1, etc.) for
pMHC repertoires of randomly chosen AA sequences (blue) and with all TCRs constrained to the same repeated AAs motif; repertoires
constrained to each of the four most likely pMHC repeat motifs are shown with different colors and are labeled in decreasing order of
likelihood. In the simulations, σ 2 = 1.

this makes labeling of repeat motifs dependent on the pMHC’s
primary sequence only. In W α

3QIB, only 7 AAs in t and 7 AAs
in q make significant contacts, so the effective lengths are
kt = kq = 7.

We will break down the problem of computing the terms
in this sum as follows: We will first focus on the probable
configurations of the peptide by itself and consider how the
different sites are chosen. Drawn from a |A| = 20 AA al-
phabet, there are N = 15 different repeat configurations of
length 7; when randomly generating AA sequences, the four
most likely repeat configurations Cq,1 = (2, 15), Cq,2 = (17),
Cq,3 = (22, 13), and Cq,4 = (3, 14) [in the section above, C is
the repeat structure of the TCR-pMHC pairing, whereas Cq,n
(n = 1, . . . , N) here indicate the repeat structure only of the
pMHC] cover about pc = 96.66% of the AA sequence space.
A complete breakdown of these probabilities can be found
in the SM [31], Table S2. We thus truncate the sum in (7)
to the pairings that can be obtained from these leading order
structures.

Now, each peptide configuration can give rise to a set of
different possible pairing structures, depending on the spe-
cific nonvanishing elements of the contact matrix. These then
need to be averaged together (with proper weighting). This
somewhat complicated calculation is presented in the SM
[31] (Sec. S6) and is carried out by using the self-averaging
property to allow for computing the average over different
realizations of the energy coefficient matrix; no rounding to
0 or 1 for the values Wi j is made in this calculation and
the results to follow. Finally, we obtain σt (pc) = 9.7833σ
and, extrapolating this value to approximate the full analytical
value in (7), we get

σt ≈

√
1
pc

· σt (pc) = 9.95σ.

This estimation has relative error of 0.6% as compared to the
simulated value of the standard deviation; see the blue plot in
Fig. 2(b). The simulated PDFs related to the four most likely
repeat structures are also shown in Fig. 2(b).

It is worth noting that in (7), the contributions of higher
values of variances are dominated by the even faster vanishing
of the corresponding probabilities. For reference, the stan-
dard deviation for this contact map ranges from σ2 = 9.0761
for Cq,2 = (17) to σ15 = 21.4090 for Cq,15 = (7); whereas
the probabilities are p2 = 30.52% and p15 = 1.56 × 10−6%,
respectively.

IV. NEGATIVE-SELECTION
RECOGNITION PROBABILITY

Negative selection trains the naïve T-cell repertoire to avoid
host cells by eliminating T cells that bind too strongly to
any of the self-peptides. We now wish to consider the effects
on the postselection repertoire due to incorporating crystal-
structure motivated contact maps into the negative-selection
process.

We focus on determining the negative selection recognition
probability as a function of the energy survival threshold Un.
For a T cell to survive negative selection, it must not bind
strongly, i.e., U < Un, to any of the self-selecting pMHCs
it encounters during selection. This is described by the
probability that the maximum of the TCR-pMHC binding
energies, max{U (t, qi )}Nq

i=1, resulting from a T cell t undergo-
ing negative selection against a repertoire, Q = {qi}Nq

i=1 of Nq
self-pMHCs, is below the threshold Un [22]. This recognition
probability is thus a monotonically decreasing function that
gradually transitions from 1 to 0 with ever increasing values of
Un. For a fixed TCR, the scale of the transition correlates with
a typical value of σ 2

t . Averaging this over different TCRs will
give rise to a width that strongly correlates with the number of
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FIG. 3. Negative-selection recognition probability as a function
of the survival energy threshold for T cells auditioning for negative
selection. All curves involving the use of contact maps are generated
from simulations sharing the same parameters apart from the contact
maps. The prediction of the RICE model (brown), the identity matrix
giving a diagonal contact map case (black), and the limiting case
where all AAs in the CDR3 loop interact with all AAs in the pMHC
(yellow) are included for comparison. Plots are averaged over the
different random energy matrices in use, and shaded areas indicate
the corresponding standard error of the mean.

contacts, as suggested by the phenomenological relationship
given above and verified in the SM [31].

We simulate negative selection for various CDR3-pMHC
interfaces (contact maps), using fixed randomly generated
TCR and pMHC repertoires and 16 zero-mean, unit-variance
randomly generated energy matrices E. In Fig. 3, we show
the recognition probability averaged over energy matrices E
for seven different simulations, four of them using contact
maps 3QIB, 3QIU, 3QIW, and 5C0A; along with a 7 × 7
identity-matrix contact map case, as well as the original RICE
model, and a 7 × 7 contact map with all unit entries case
simulating the scenario where all AAs in t are interacting
with all AAs in q. At a given Un, the recognition probability
is higher for those contact maps with higher σ 2 [see, also,
Fig. 2(a)], giving a higher probability for a pair of t and q to
bind strongly enough and thus for t to face deletion. Here, the
independence of RICE energy terms eliminates any possibility
of the effects due to repeated AA pairs, which therefore yields
a minimal variance estimate for a given number of contacts.
The comparatively greater variance of the diagonal contact
model is the result of possible repeated interaction terms. This
leads to higher negative selection recognition probability for
the diagonal contact map case and makes it closer to an actual
contact map dependent calculation. Interestingly, the data in
the figure show directly that similar to what we argued earlier,
the recognition probability curve for a single realization is
quite accurately given by the average over energy matrices.

V. RECOGNITION PROBABILITY OF POINT-MUTATED
ANTIGENS BY NEGATIVELY SELECTED T CELLS

One of the motivations to model negative selection is to un-
derstand how the rejection of T cells that detect self-peptides
negatively impacts the chances that T cells can detect tumor

neo-antigens; after all, these neo-antigens are typically just
one mutated amino acid away from a self-peptide sequence.
We therefore turn to the probability that a T cell (t) that has
survived negative selection is able to recognize an antigen
(q̃) whose primary sequence differs by only one AA from a
self-peptide (q) included in the negative-selecting repertoire
(Q). We call such antigen a point mutant. In general, this
probability for a fixed T cell is defined via

D̃t (Nq) = P [U (t, q̃) " Un| max{U (t,Q)} < Un], (8)

where we have averaged over all possible point mutants with
nontrivial contacts. Here, Q denotes the selecting repertoire of
Nq peptides, one of which is q. Prior modeling (cf. [22]) has
demonstrated the utility of considering two analytic approxi-
mations for the selection and recognition process. Since q̃ is
closely related to q, we approximate the recognition of q̃ based
on selection trained to only avoid q, q̃’s most closely related
peptide, corresponding to the Nq = 1 case. Similarly, since
a randomly generated peptide not participating in selection
shares little overlap with any self-peptides, we approximate
the postselection recognition of a random peptide by the
unconditional recognition probability, corresponding to the
Nq = 0 case. In the limiting case where t has not undergone
negative selection (Nq = 0), Eq. (8) reduces to the recognition
probability of a randomly generated antigen. The case corre-
sponding to t negatively trained only on q (Nq = 1), where the
point-mutant position has k contacts, results in the expression

Dt (1) = 1 − FR(UN )−1
[ ∫

R
FR−k (Un − x)Fk (x) fk (x)dx

+
∫

R

∫

[x,∞)
FR−k (Un − x̃) fk (x̃) fk (x)dx̃dx

]
, (9)

where Fk (x) and fk (x) denote the distribution function and
density function of mean-zero normal random variables with
variance σ 2k (see the SM [31], Sec. S7, for a full derivation).
We expect that for relatively small Nq, it is unlikely that any of
the peptides in the training set will be close enough to q or q̃
to help distinguish the two binding energies; hence, p̃1 should
be a reasonable approximation to Dt . This agreement should
decrease as Nq increases. The accuracy of this approximation
is explored in the SM [31], Fig. S9.

More generally, we ran a set of simulations with varying
sizes Nq = {102, 103, 104} to assess the detection of q̃ by a
T cell trained to evade q. We used the CDR3α-pMHC inter-
face of 3QIB [top left of Fig. 1(b)] as the contact map for
the simulations, for simplicity. Figure 4(a) shows the simu-
lated point-mutant recognition probabilities as a function of
T-cell negative-selection survival probability at three different
sizes of the selecting repertoire. At lower (higher) values of
negative-selection survival probability, i.e., when the negative
selection is more (less) stringent during T-cell maturation, a
mature T cell’s sense of an antigen resembling self-antigens
is relatively more strict (lenient); this means that the mature T
cell is less (more) tolerant to changes in the peptide sequence.
Therefore, recognition of the point mutant is more (less) easily
triggered by deviations caused by single AA mutations; this
results in higher (lower) point-mutant recognition probability
at lower (higher) T-cell negative-selection survival probability.
(See the SM [31], Sec. S7, for a more detailed explanation.)
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FIG. 4. Recognition probability of point-mutated peptides by T cells that have undergone negative selection. (a) The point-mutant
recognition probability from simulations plotted for T cells that have received negative selection against self-peptide repertoires of three
different sizes, Nq = {102, 103, 104}. (b) The point-mutant recognition probability from simulations that changed the site of the mutated AA;
for the CDR3α-pMHC interface of 3QIB [top left panel of Fig. 1(b)] in use, pMHC-AAs in high-contact sites are in contact with 5 TCR-AAs,
whereas pMHC-AAs in sparse-contact sites are in contact with only 1 TCR-AA; and when picking random sites to mutate, the number of
peptide-AAs that a given TCR-AA can contact ranges from 1 to 5.

Next, we compare the results at different Nq. This is a bit
tricky because fixing the negative-selection probability leads
to different thresholds Un at different training set sizes. This
accounts for a large part, but not all, of the difference in
the curves seen in Fig. 4(a); see the SM [31], Fig S9. By
increasing the size of the negative-selecting repertoire Nq, a
mature T cell’s sense for self-antigen resemblance broadens;
thus leading to higher tolerance (less detectability) for point
mutants at higher Nq values.

Another feature impacting point-mutant recognition prob-
ability that stems from incorporating contact maps into the
model pertains to the site in the pMHC sequence of the mu-
tated AA. As can be seen in the contact maps in Fig. 1(b),
some pMHC AAs make more significant contacts with TCR
AAs than other pMHC AAs. In the case of the 3QIB’s
CDR3α-pMHC contact map [top left of Fig. 1(b)], the
number of nonvanishing contacts for a particular pMHC AA
ranges from 1 (sparse-contact site) to 5 (high-contact site),
with an averaged 3.06 TCR AAs in contact by the 7 pMHC
AAs with nonvanishing contacts. Accordingly, a point mu-
tant q̃ with its mutation occurring in a sparse-contact site
(high-contact site) bears higher (lower) resemblance with the
nonmutant q for a T cell. This effect clearly should impact the
point-mutant recognition probability, with high-contact site
point mutants having higher recognition probability than their
sparse-contact counterparts, and point mutants with randomly
chosen mutation sites having recognition probability some-
where in between the aforementioned two. We investigated
this idea by running three simulations as explained in the para-
graph above, but with the additional constraint that in each
round of simulations, the mutated site was as follows: one,
always a high-contact site; two, always a sparse-contact site;
and three, randomly chosen. The negative-selection repertoire
was fixed at Nq = 104. The point-mutant recognition proba-

bility of these simulations is shown in Fig. 4(b) and exhibits
agreement with the expected behavior.

The aforementioned RICE framework cannot adequately
distinguish high-contact sites from sparse ones on either the
TCR or pMHC amino acid sequences. RICE’s prediction for
neo-epitope recognition probability therefore represents fixed
estimates for a typical “one-contact” mutation. On the other
hand, the approach in this paper enables a quantitative esti-
mate of this obvious dependence. This aligns with previous
strategies calling for mutations to target TCR-facing peptide
amino acids; see, for example, [34,35].

In [36], Karapetyan et al. showed that amino acids in the
peptide that face the TCR are less tolerant to substitution,
resulting in a drastic decrease in T-cell binding, activation, and
killing when the TCR-facing amino acids are swapped; other
amino acids in the peptide were more tolerant to substitutions.
Also, Wilson et al. [37] found that for the Plasmodium berghei
peptide (SYIPSAEKI), four peptide amino acid positions
(S1, I3, S5, and E7) outside of the known TCR-contacting
position (K8) moderately decreased T-cell re-stimulation in
vitro when swapped with alanine. In addition, the T-cell re-
stimulation response was modest for alanine substitution in
all positions but K8 when testing with three different adjuvant
or delivery systems, suggesting that only K8 hinders cross
reactivity when replaced by alanine. Taken together, these
two papers highlight a more influential role of TCR-facing
(potentially high-contacting) peptide amino acids over other
peptide amino acids.

VI. CONCLUSIONS

In this manuscript, we considered the role of a nontrivial
contact map acting as a template for the explicit interac-
tions between the TCR and pMHC AA sequences. This
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approach is a compromise between making an arbitrary rule
as to how these sequences interact (for example, assuming
only diagonal coupling as done in previous models) or us-
ing a measured crystal structure for each considered pair, an
obvious impossibility for anything resembling a large reper-
toire undergoing negative selection. The formulation isolates
contributions from spatial conformation of CDR3 loops and
pMHC complexes into these contact maps, while the remain-
ing features are encapsulated in energy coefficient matrices.
The above model takes into account the spatial proximity of
TCR-peptide amino acid pairs through the contact map and
implicitly contains information regarding amino acid sizes. It
does not encode other AA pair-specific structural information,
for example, orientation. The RICE model makes the alternate
assumption, namely, that additional structural details make
each pair energy completely independent of each other, even
for the exact same AAs. This makes a very big difference in
the variance calculations, as has been seen in the selection
curves. Also, if every contacting pair has a different energy,
we could not possibly learn useful energy matrix models from
existing datasets of strong binders. We therefore have chosen
to proceed with the simpler assumption, recognizing that this
may need to be modified in the future.

Although all the analysis here was done using randomly
generated energy matrices, serving as a baseline “toy” model,
the methodology is not restricted to such a choice and other
energy matrices, such as the hydrophobicity-driven MJ matrix
[32,38], or data-driven matrices [29] can be used instead.
Herein, we compared negative-selection recognition proba-
bilities of the contact map dependent model with that of the
RICE model; in [22], there is a more in-depth comparison
of the RICE model with an approach that uses MJ energy
coefficients. Since our focus here is on the role of structural
information, we restricted our analysis to models with the
simplest approach to the energy matrix, namely, assuming it
is composed of Gaussian random variables. Future efforts will
combine our analysis here with more realistic energy matrices,
as determined, e.g., by the machine learning methods in our
recent paper [29].

We observed that the inclusion of contact maps gave rise
to several features impacting the variance of the TCR-pMHC
binding energy: a density-related one, as the number of non-
vanishing contacts correlates with increased variance, and a
topology-related one, in which the repeat structure of the
AAs in CDR3-loops’ and in pMHC-complexes’ sequences
also skews the variance, with additional repeats correlating
with increased variance. These changes in variance also affect
negative-selection recognition probabilities, with larger vari-

ances driving higher recognition probabilities. The proposed
generalization is therefore useful for characterizing the dis-
tributional behavior of TCR systems with a relatively fixed
contact structure. Given that even at fixed MHC allele, there
are likely to be several distinct spatial conformations that can
give rise to effective binding, a full treatment of the repertoire
should include finding the set of templates that give rise to
the largest possible binding for the sequences under consider-
ation. This extension will be reported elsewhere.

Another influence of the topology of the contact map man-
ifest in the recognition probability of point-mutated antigens
by T cells that have been negatively selected. Here, some
pMHC-AAs have a higher number of nonvanishing contacts
with TCR-AAs, that upon mutation make the antigen to be
perceived more like foreign by the T cells than when mutating
pMHC-AAs with fewer nonvanishing contacts. This results
in higher recognition probability of high-contact site point
mutants. Conversely, this notion can provide at least some
information about which mutations in a previously detected
peptide could prevent the detection of an evolved virus by
memory T cells generated in an earlier infection. Data to this
effect are now becoming available in the context of COVID-
19-specific T cells in never infected individuals resulting from
prior responses to other endemic coronaviruses [39].

As seen here, the problem of dissecting the generation and
functioning of the postselection T-cell repertoire is incredi-
bly complex, even utilizing a number of vastly simplifying
assumptions. The full problem requires attention to biases in
the generation of the naïve repertoire [40], inclusion of a set of
different MHC alleles for different individuals, a better handle
on the statistical properties of the negative-selection training
set, and, of course, the full range of molecular biophysics
effects that contribute to binding energy and on-off kinetics.
These cannot all be included in any useful theoretical model.
By isolating and improving our understanding of the effects
of specific contact geometries, we hope to build intuition for
how different aspects of this complex system contribute to
different functional aspects of the full T-cell arm of adaptive
immunity.
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S1 Introduction

We provide complementary information for the paper that includes additional plots and derivations
for the data shown and ideas discussed in the main text of the paper. We start by presenting our
generalization to the RICE model, referred to as a contact-map-based random energy model, that uses
crystal-structure informed contact maps to help determine the TCR-pMHC interaction energy. We
show additional contact maps that were not included in the main text, and then show how the number
of contacts in a contact map changes with the choice of distance cut-o↵ rmax. We provide a detailed
derivation of how to estimate how the variance of the TCR-pMHC binding energy distribution scales
with the number of contacts. We follow up with a discussion on how the topology of the contact
map makes the AA repeat structure in a TCR’s or pMHC’s sequence influence the aforementioned
variance. We work out an explicit TCR-pMHC repeat-structure pairing case that illustrates how to
proceed with other repeat-structure pairings, and include a comparison of our predictions with direct
simulations. We show an explicit derivation of the point-mutant recognition probability where the
negative selection training is performed only by the non-mutated antigen, and evaluate the extent to
which this provides an accurate estimate of the full recognition probability. We finish by presenting
an argument for the confidence of estimating mean binding energy and its variance by self-averaging
pairwise energies.

S2 Contact map based random energy model

Previously, we introduced the RICE model as a mathematical framework for T cell selection that
focuses on the TCR-pMHC interface. This interface is described as sequences of AAs interacting in a
site-to-site basis with no further inclusion of information regarding the spatial conformation of the AA
chains in the interface. Our generalization in this paper incorporates, using this type of information
obtained from crystal structures of TCRs bound to pMHCs, in the form of distance-dependent weights
for the pairwise interacting energies in the TCR-pMHC interface.

The amino acid (AA) alphabet A is comprised of |A| = 20 di↵erent AAs. We define an energy
matrix E = (Enm) as a |A|⇥ |A| symmetric matrix containing all the AA pairwise interaction scores.
Specifically, the AAs interact as pairs with the interaction between AAs an and am (an, am 2 A)
contributing an energy Enm = Emn to the overall interaction strength. Here, to allow for a better
understanding on how the contact maps impact the model of the TCR-pMHC interaction, we select
the entries of E from the standard normal distribution so that Enm ⇠ N (µ = 0,�2 = 1).

The TCR has two CDR3 loops (CDR3↵ and CDR3�). Because we will proceed by analyzing the
energy contribution of each loop independently, we perform our analysis using a single contact map
with the understanding that the complete CDR3-pMHC interaction is the addition of the contributions
of each of the two CDR3 loops calculated separately. We depict the TCR as a single sequence of AAs
t = {t(i)}kt

i=1 and the pMHC is an AA sequence q = {q(j)}kq

j=1, with kt and kq the total number of
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TCR and pMHC AAs, respectively, subject to the choice of contact map. The TCR-pMHC binding
energy is given by

U(t, q) = Uc +
X

i,j

Wij · Et(i)q(j), (S1)

where the sum of the pairwise interacting AA scores Et(i)q(j) are weighted by the contacts Wij from
the contact map. The additional element Uc accounts for the contribution of the CDR1 and CDR2
complexes interacting with the rest of the MHC molecule, which are largely conserved across specific
MHC systems.

We utilize the definition of a contact weighting function between sites i and j, on respectively the
TCR and the displayed peptide, utilized previously in studies of protein folding [Davtyan2012] as a
negative-sigmoid that depends on three parameters: the distance separating the C� (C↵ for glycine)
atoms in the crystal structure (rij), a cut-o↵ distance rmax, and a transition variable ⌘ controlling how
rapidly the negative-sigmoid transitions in the vicinity of rmax. The weight is calculated as

Wij(rij) =
1

2
(1� tanh [⌘ · (rij � rmax)]) . (S2)

The contact map-based random energy model determines the recognition of a pMHC q by a T
cell t by a�nity strength. An energy threshold Un determines a binary outcome, with U(t, q) � Un

(resp. U(t, q) < Un) that represents T cell recognition (resp. no recognition). Consequently, the PDF
for U(t, q) determines recognition probability at a given threshold. As we assumed Enm ⇠ N (µ =
0,�2 = 1), U(t, q) is also normally distributed around µtq = 0, leaving the variance to be determined.
Note that the variance is defined by averaging over the energy matrix realization and does not directly
connect to the value of U(t, q) for fixed t and q is a specific realization. This point will be discussed
later.

We devote later parts of this SI to a discussion of the relationship of the variance of U(t, q) to the
number of non-vanishing contacts in W and the repeat structure of t and q. Note that we will usually
define the variance with respect to averaging over the choice of the energy matrix from its normally
distributed ensemble. In addition, we may investigate quantities that are defined as averages over
choices of peptide sequence and/or TCR sequence. We will discuss below the extent to which these
sequence-averaged quantities for a single energy matrix realization is well-approximated by its average
value over the energy ensemble.

S3 Contact maps

Here we display some additional contact maps. In figure S1, we focus on the CDR3↵-pMHC inter-

face of the crystal structure PDB ID 3QIB, with ⌘ = 1 �A�1
fixed and various values of rmax =

{6.5, 7.5, 8.5, 9.5} [�A] in eq. (S2), and we illustrate how the number of contacts in a contact map
changes noticeably in that range of rmax.

In figures S2-S4, the contact maps for di↵erent crystal structures are calculated with fixed ⌘ = 1 �A�1

and rmax = 9.5 �A. We observe that the TCR-MHC pairing is more influential than the particular
peptide to the overall topology of the contact maps. When comparing the contact maps in Fig. S2,
the same TCR-MHC pairing (human T cell hy.1B11 bound to MHC type II HLA-DQ1 molecule) shows
a similar contact-map topology in spite of two di↵erent peptides being displayed by the MHC molecule
in the two crystal structures. This feature is also present in Fig. S4, where the contact maps for four
crystal structures with the same TCR-MHC pairing (human 1E6 TCR bound to MHC type I HLA-A02
molecule) bear peptides that only share the same AAs (GPD) in the core 4-6 sites. However, the same
degree of homology conservation is not observed across TCRs that can bind to the same pMHC as in
Fig. S3. One should therefore expect that calculations that use a fixed contact map with nonetheless
varying peptides but with a fixed TCR will likely be more quantitatively accurate than calculations
that also very the TCR sequences.
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To better illustrate some degree to which point-mutations in antigens are reflected in TCR-pMHC
contact maps, we used PDB ID 3QIU and PDB ID 3QIW as they satisfy the point-mutation condition.
The matrix subtraction the contact maps of 3QIU minus 3QIW (Fig. 1b in main) is shown in Fig. S5.
In each interface, we observe up to four rather mild di↵ering contacts out of 140 total contacts. To
provide a numerical estimate, we treat each contact map as a vector (each matrix element taken as a
coordinate) and defined a similarity measure as

M(~u,~v) =
|~u� ~v|

min(|~u|, |~v|) . (S3)

Note that two contact maps are more similar if M is closer to zero. We found M(3QIU, 3QIW)↵ =
0.2508 and M(3QIU, 3QIW)� = 0.0729; this indicates less variation in the CDR3�-pMHC interface
than in the CDR3↵-pMHC counterpart, consistent with what Fig. S5 reflects. These results are an
indication of the fact that point-mutants have rather small e↵ects on CDR3 complex-pMHC binding
profile as represented through contact maps. Of course, Many more test cases should be considered to
test the robustness of this claim, and this will be reported elsewhere.

S4 Repeated amino acids

To develop intuition, we consider the case where TCR t encounters a constant peptide q = {a, a, . . . , a},
a 2 A. This represents a simple, upper-bound on added variance.

S4.1 Random Energy Model Without Nonadjacent Spatial Interactions

In this case nt = nq ⌘ n, and W is the identity matrix, and so Eq. S1 becomes

U(t, q) =
nX

k=1

Xt(k),q(k) (S4)

giving, for the fixed t and W being considered,

Var (U(t, q) | t,W) =

*
MX

j=1

 
nX

k=1

Xtk,qk

!2

· P (qk = j)

+
=

1

M

MX

j=1

* 
nX

k=1

Xtk,j

!2+
, (S5)

assuming that each letter in the alphabet is uniformly likely. Because we are averaging over the energy
matrix ensemble, each choice of a is equivalent and the average over peptide AA choice can be dropped.

S4.1.1 Case I. Distinct TCR sequence

If t has no repeats, then the Xtk,j are IID random variables distributed N
�
0,�2

�
. We refer to this as

a distinct TCR, and denote its sum for any specific choice of j comprising the constant peptide as

Y ⌘
nX

k=1

Xtk,j . (S6)

Here, Y ⇠ N
�
0, n�2

�
so that

Var (U(t, q) | t,W) = n�2. (S7)
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S4.1.2 Case II. Constant TCR sequence

Repeated TCR amino acid entries introduces additional variance. In the extreme case, and without
loss of generality, tk = 1 is assumed to be constant at all positions, which refer to as a constant TCR.
In this case,

Y =
nX

k=1

X1,1 = nX1,1 (S8)

so that Y ⇠ N
�
0, n2�2

�
and

Var (U(t, q) | q) = n2�2. (S9)

S4.1.3 Case III. General TCR sequence

We now consider t having arbitrary repeats. We will define a sequence r of length M that counts the
number of each amino acid present in the TCR sequence as follows:

ri =
nX

k=1

[rk=i], (S10)

where is the usual indicator function

[rk=i] =

⇢
1, rk = i;
0, rk 6= i.

(S11)

We shall refer to this alternative representation of t as the amino acid contact sequence . It follows
immediately by definition that

P
i ri = n. An example TCR and r pair is given below (n = 10,

M = 20):

t = {1, 2, 16, 5, 1, 1, 16, 8, 18, 20} r = {3, 1, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 2, 0, 1, 0, 1}. (S12)

In case I (S4.1.1) above, r has n 1-entries and M � n 0-entries. In case II (S4.1.2), r has a single
non-zero entry equal to n. This representation allows TCRs to be written as a sum of independent
random variables. Y in this case can be represented as

Y =
MX

i=1

riXi,j . (S13)

The ri weight each random variable Xi,j according to the relative abundance of that particular amino
acid in the TCR sequence. This yields

⌦
Y 2
↵
= �2

MX

i=1

r2i , (S14)

so that the variance may be represented as

Var (U(t, q) | t,W) = ↵n�2. (S15)

where,

↵ ⌘ 1

n

MX

i=1

r2i . (S16)

The e↵ect of repeated entries becomes apparent, as we note that Eq. S16 is minimized and equal to 1
when the peptide entries are distinct (Case I above) , while ↵ = n when the peptide is a single repeat
(Case II).
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S4.2 Random Energy Model With Nonadjacent Spatial Interactions

We now consider the addition of a contact map W = wk,`. The previous section details one extreme,
when wk,` = �k,`.

S4.2.1 Case I. Adjacent interactions only

This reduces to Sec. S4.1.

S4.2.2 Case II. All Interactions

If all interactions are allowed then wk,` = 1. Eq. S1 reduces to

U(t, q) =

nqX

`=1

ntX

k=1

Xtk,q` . (S17)

so that the sum across each TCR conditioned on the peptide amino acid and rearranged according to
repeats becomes

Y =

nqX

`=1

MX

i=1

riXi,j = nq

MX

i=1

riXi,j . (S18)

where again the choice of j is irrelevant. In this case, we have

⌦
Y 2
↵
= �2nq

MX

i=1

r2i , (S19)

and
Var (U(t, q) | t,W) = ↵ntnq�

2, (S20)

with

↵ ⌘ 1

nt

MX

i=1

r2i . (S21)

We now can understand the range of allowable noise in these models. To compare with the behavior
in Sec. S4.1, we summarize the range of the conditional variance assuming that nt = nq = n.

Conditional Variance Distinct TCR Constant TCR

Adjacent Interactions n�2 n2�2

All Interactions n2�2 n3�2

Table S1: Range of conditional variances in for the random energy model with spatial interactions
when encountering a constant peptide.

S4.2.3 Case III. Arbitrary Spatial interactions

For a general W, we have

U(t, q) =

nqX

`=1

ntX

k=1

wk,`Xtk,q` =
1

M

MX

j=1

nqX

`=1

ntX

k=1

wk,`Xtk,j . (S22)
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Again, once we average over the energy matrix choice, the average over M becomes irrelevant. t’s
corresponding amino acid contact sequence R is defined as

Ri ⌘
ntX

k=1

Nk [tk=i]; Nk ⌘
nqX

`=1

wk,` (S23)

where Ri (resp. Nk) represents the total number of interactions of TCR amino acid i (resp. position

k) with the peptide sequence. Of course,
PM

i=1 Ri =
Pnt

k=1 Nk and the special case where maxk Nk = 1
reduces to Eq. S10. The inner-double sum can be written as:

Y =

nqX

`=1

ntX

k=1

wk,`Xtk,j =
ntX

k=1

NkXtk,j =
MX

i=1

RiXi,j , (S24)

which is analogous to Eq. S13. From here,

⌦
Y 2
↵
= �2

MX

i=1

R2
i , (S25)

giving
Var (U(t, q) | t,W) = ↵ntnq�

2, (S26)

with

↵ ⌘ 1

nt

MX

i=1

R2
i . (S27)

In order to calculate conditional variance in this case, it su�ces to record the number of total interac-
tions Nk for each t amino acid position, and then aggregate their values together if the amino acid is
repeated, giving Rk. From there, the final variance is related to original variance scaled according to
the sum of squared Rk terms.

S4.2.4 Case IV. Non-identical variance

The above procedure can be applied to the more general case where each amino acid pair may interact
with di↵erent variance: ai,j ⇠ N

�
0,�2

i,j

�
. In this case, the variance can be expressed as

Var (U(t, q) | t,W) = ↵nq�
2
e↵, (S28)

where ↵ is given by Eq. S27, and

�2
e↵ =

1

M

MX

j=1

vuut
PM

i=1 (�i,jRi)
2

PM
i=1 R

2
i

. (S29)

6



S5 Non-repeated amino acids

Here, we consider the general case where an arbitrary TCR-peptide pairs are considered.

S5.1 Unconditional variance

In this section, the contact map W is fixed, and the goal is to characterize the variance over the
distribution of possible q and t sequences. We must therefore keep track of the number of unordered
repeated amino acid pairs. Each of the NC ⌘ |W| contacts is chosen out of a total of M̃ =

�M+1
2

�

possible unordered amino acid pairs (i, j) = (j, i), where there are at most NC repeats (i.e. if all
contacts are the same), and at most NC distinct pairings (provided NC < M̃). We define Z =
{Z1, Z2, . . . , Zj , . . . , ZM̃} to be a vector of length M̃ that counts the number of times each amino acid
pair repeats. Ordering of the sequence elements Z matter in this representation. Each of the NC pairs
is equally likely and occurs with probability 1/M̃ . In this way, Z follows a multinomial distribution:

P (Z) =
NC !

M̃NC
QM̃

j=1 Zj !
. (S30)

We are more interested in characterizing the total number of repeats, not the particular sequence.
This is best represented by integer partitions of NC :

FNC =

(
F =

�
1⌘1 , 2⌘2 , . . . , N

⌘NC
C

�
:
NCX

s=1

s⌘s = NC

)
, (S31)

where F refers to an explicit partition of the equivalence classes FNC . ⌘s describes the number of
amino-acid pairs that are repeated s times. It can be shown that the number of elements in a given
partition F , |F |, is given by

|F | =
NCY

s=1

✓
M̃ �

Ps�1
h=0 ⌘h

⌘s

◆
=

M̃ !⇣QNC

s=1 ⌘s!
⌘⇣

M̃ � ⌘
⌘
!
, with ⌘ =

NCX

j=1

⌘s. (S32)

The advantage of this representation is in the straightforward variance calculation:

Var (F ) = �2
NCX

s=1

�
s2⌘s

�
(S33)

which is a generalization of Eq. S25. Putting this together, with P (F ) = |{z 2 F}| P (z), and noting

that
QM̃

j=1 zj ! =
QNC

s=1 (s!)
⌘s we can calculate the total variance assuming NC contacts as:

Var (U(t, q) | W) =
X

F2FNC

Var (U(t, q) | F )) P (F )

= �2
X

F2FNC

M̃ !NC !
PNC

s=1

�
s2⌘s

�

M̃NC (M̃ � ⌘)!
QNC

s=1 ⌘s!(s!)
⌘s

. (S34)

Eq. S34 provides a convenient way to calculate variance by categorizing interactions based on their
repeat structure. For the problem at hand, n ⇠ 10 so that |W|  100. In general, the issue of calculating
variance requires an enumeration of the integer partitions of |W|. This may become computationally
infeasible for large interactions, (for example, the number of integer partitions of 100 is over 1.9 · 108).
This variance is bounded below (resp. above) by the extreme case of having no (resp. all) repeats so
that clearly

NC�
2  Var (U(t, q) | W )  N2

C�
2. (S35)
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If all we are interested in is the variance scale as a function of the number of contacts, we may
provide another convenient approximation by calculating the variance of a random energy model with
nonadjacent spatial interactions (i.e. diagonalized contact map), this time augmented so that the total
length is NC . In this case, the number of repeats of each type may be represented by the vector Z
with distribution given in Eq. S30. Since Z follows a multinomial distribution with equal probabilities
(p ⌘ 1/M̃),

⌦
Z2
j

↵
= Var (Zj) + hZji2 = NCp(1� p) + (NCp)

2 = p
⇥
N2

Cp+NC(1� p)
⇤
. (S36)

Thus this variance may be expressed as

Var (U(t, q) | W) =
M̃X

i=1

⌦
Z2
j

↵

= M̃p[N2
Cp+NC(1� p)]

=
1

M̃
N2

C +

✓
1� 1

M̃

◆
NC . (S37)

This is a straightforward, closed-form estimate detailing how variance scales with the number of con-
tacts, and states that the variance estimate is a convex combination of the two extreme cases (sums
of independent energies versus dependent energies) weighted according to the total number of possible
contact pairs. We remark that this estimate is a lower bound since the assumption of nonadjacent
spatial interactions ignores the increased likelihood of repeated amino acid pairs arising from t and q
positions having multiple contacts. Consequently, its accuracy is greater for contact maps that exhibit
behavior closer to that of a diagonal map.

S5.2 Conditional variance

As before, W is taken to be fixed. In this section we assume, without loss of generality for the
conditional peptide case, that t is also fixed. To each TCR there corresponds an amino-acid contact
sequence Ri that captures dependencies both due to repeated amino acids in the TCR binding sequence
as well as repeated peptide contacts for the same TCR amino acid position. As before, sums of energy
contributions across the Ri are conditionally independent. Since peptide amino acid sequences are now
assumed arbitrary, we must consider the e↵ects of distinct terms and repeats for a given amino-acid
contact element. We will do this term-by-term, so that for amino acid i, there are Ri pairings with
complementary peptide amino acids, each equally likely. Since TCR amino acid i is fixed, there are
a total of M possible configurations determined solely by the peptide amino acids, where we have at
most Ri repeats (if all peptide amino acids are the same), and at most Ri distinct pairings (provided
Ri < M). In an approach similar to before, we define Z = {Z1, Z2, . . . , Zj , . . . ZM} to count the
number of times each amino acid pair repeats {(i, 1), (i, 2), . . . , (i, j), . . . , (i,M)}) with (i, j) = (j, i).
Each pair is equally likely with probability 1/M .

Here, the ith out of M amino acids on the T-cell CDR3 sequence corresponds to Ri repeated
contacts with peptide amino acids. From the above, we have that the variance for a given TCR amino
acid may be given by

Var (U(i, q) | t,W) = R2
i /M +Ri(1� 1/M). (S38)

Thus,

Var (U(t, q) | t,W) =
MX

i=1

R2
i /M +Ri(1� 1/M), with

MX

i=1

Ri = |W|. (S39)

In the special case of no repeats, with each of nt TCR amino acids having a single contact, Eq.
S39 yields nt as the scale factor, in agreement with the simplest case.
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S6 Numerical approximation for TCR-pMHC binding energy

variance

Here we show how we estimate the TCR-pMHC binding energy variance. The exact calculation of the
aforementioned variance is the sum of the variances for the possible repeat structures weighted by the
corresponding occurrence probability of the repeat structure (see eq. (S45) below). The number of
elements in the sum increases rapidly with the length of the TCR and pMHC sequences, but many
of the repeat structures have a very low probability of occurrence; this allows for accounting for an
approximated value of the variance by only considering the most likely repeat structures in the sum,
and extrapolating this approximation to estimate the expected TCR-pMHC binding energy variance.

In order to isolate the e↵ects of repeat structures on the calculation of the variance, we restrict
ourselves to equal unit variances, Eij ⇠ N (µ = 0,�2 = 1). We also assume that the overall contribution
of the TCR binding to the MHC molecule is a constant, that for practical purposes we set to zero,
Uc = 0. The TCR-pMHC binding energy is reduced to

U(t, q) =
X

i,j

Wij · Et(i)q(j). (S40)

where the mean energy hU(t, q)i and variance Var (U(t, q)) are the first and second moments of U(t, q),
respectively. One way to proceed in calculating the aforementioned mean and variance is to think of
U(t, q) as the sum of the binding energies between a TCR AA t(i) and the entire pMHC sequence

q = {q(j)}kq

j=1, Ut(i). Once the variance of Ut(i), that is Var
�
Ut(i)

�
= �2

t(i), is calculated, we can use

these values to compute variance for U(t, q). Therefore,

U(t, q) =
ktX

i

2

4
kqX

j

Wij · Et(i)q(j)

3

5 ⌘
ktX

i

Ut(i), (S41)

and

Var
�
Ut(i)

�
= Var

0

@
kqX

j=1

Wij · Et(i)q(j)

1

A (S42)

=

kqX

j=1

W2
ij�

2
t(i)q(j) + 2

X

j<k

WijWik Cov
�
Et(i)q(j), Et(i)q(k)

�
⌘ �2

t(i). (S43)

We obtain

Var (U(t, q)) ⌘ �2
tq =

ktX

i=1

�2
t(i) + 2

X

i<k

Cov
�
Ut(i), Ut(k)

�
. (S44)

Given that Et(i)q(j) are IID, the second sum in (S44) involving correlation vanishes.
Equations for the variance Var (U(t, q)) in (S44) is a general formula that applies to any given

contact map. The calculation of the variance Var (U(t, q)), as alluded in the paper, is contact-map
specific. This contact-map dependence is two-fold: on one side, the contact map defines the values
Wij ; on the other side, the non-vanishing weights define a topology for the CDR3-pMHC interface
that influence the possible repeat structures present in the interface at a repertoire level.

At repertoire level for a TCR undergoing negative selection, one randomly generated pMHC se-
quence q can have as many di↵erent repeat structures as the partitions of kq, the length of q. The
variance in (S44) is in general dependent on the particular repeat structure and even the specific
location of the repeated AAs of q in the CDR3-pMHC interface. The expected energy variance for
a randomly generated TCR undergoing selection against a randomly generated pMHC repertoire is
the occurrence probability-weighted sum of the variances for each particular repeat structure. If �2

n

9



is the average variance for the n-th repeat structure, pn is the probability for the corresponding n-th
repeat structure to occur, and NR the total number of possible repeat structures, the expected energy
variance is given by

�2
tq =

NRX

n=1

pn�
2
n. (S45)

In principle, one can compute each pn and �2
n, making �2

tq an exact estimation of the variance. However,
NR increases rapidly with the lengths of the TCR and the pMHC sequences kt and kq, respectively,
which typically are kt ⇠ kq ⇠ 10; given that there are 42 partitions of 10, NR = 1764 when kt =
kq = 10, making the computation in (S45) unpractical. Nonetheless, some of the repeat structures are
very unlikely (up to six orders of magnitude smaller for kt = kq = 7, this gap increases with kt and
kq) to be present in the repertoire, while the variances fluctuate in one or two orders of magnitude;
the compounding e↵ect in (S45) is that the probabilities of the unlikely cases dominate over their
respective variances, rendering the contribution of these cases to be negligible for �2

tq. We take this
simplification one step further by selecting a cut-o↵ probability pc of the most likely pMHC present
in the repertoire, calculate a truncated variance �2

approx, and extrapolating to obtain an approximated
value of �2

tq as

�2
tq ⇡

✓
1

pc

◆
�2
approx. (S46)

We further discuss on the details and illustrate the approximation method below with an example.

S6.1 Example using 3QIB’s CDR3↵-pMHC contact map

We focus on illustrating the method of approximating the variance of the energy distribution on one
contact map; this method that can be applied for any contact map. We use for illustration purposes
the CDR3↵-pMHC contact map of crystal structure 3QIB (see top left panel in Fig. 1B). Only 7
pMHC AAs and 7 CDR3↵ AAs have significant non-vanishing contacts, leaving kt = kq = k = 7. For
further simplicity, assume the TCR to be a sequence of a repeated AA, t = {tr, tr, · · · , tr}, so that all
repeat structure nuance is encoded in the pMHC sequence.

Under the assumptions laid out above, the exact value of the variance �2
tq in (S45) has a sum of

NR = 15 elements. We illustrate how to obtain an estimation of �2
tq by extrapolating the approxi-

mated variance �2
approx, that is calculated by only considering for the sum the four most likely repeat

structures. These four repeat structures cover about pc = 96.67% of the randomly generated sequences
in the pMHC repertoire (see table S2 for full breakdown of the probabilities of each repeat structure).

We now need the average variance of each repeat structure �2
n. Here, �2

n is an average of the
variances of all possible permutations of repeated AAs within repeat structure Cn because the values in
the contact map and the number of contacts for each pMHC AA q(j) vary. For example, C1 = (2, 15)
has one repeat among the interacting AAs in q, the location of the repeated AAs has

�7
2

�
= 21

permutations, C2 = (17) has no repetitions, C3 = (22, 13) has 1
2

� 7
2,2

�
= 105 permutations, C4 = (3, 14)

has
�7
3

�
= 35 permutations, and so on. The average �n’s of the repeat structures of interest are

�1 = 9.9923,

�2 = 9.0761,

�3 = 10.8350,

�4 = 11.6772.

We show step by step how to calculate �1 in the section below to serve as an example for the other
repeat structures. With these four values we get

�2
approx =

4X

n=1

pn · �2
n =) �approx ⇡ 9.7833.
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Label Class Probability (%)
C2 (17) 30.52
C1 (2, 15) 45.79
C3 (22, 13) 15.26
C6 (23, 1) 0.95
C4 (3, 14) 5.09
C5 (3, 2, 12) 1.91
C8 (3, 22) 5.61⇥ 10�2

C10 (32, 1) 3.74⇥ 10�2

C7 (4, 13) 0.32
C9 (4, 2, 1) 5.61⇥ 10�2

C12 (4, 3) 1.04⇥ 10�3

C11 (5, 12) 1.12⇥ 10�2

C13 (5, 2) 6.23⇥ 10�4

C14 (6, 1) 2.01⇥ 10�4

C15 (7) 1.56⇥ 10�6

Table S2: Classes (repeat structures) classifying AA sequences with length k = 7 and their respective
probability of occurrence when the AA alphabet is A = 20 characters in size. Repeat structures are
labelled in descending order of likelihood

Thus,

�tq ⇡

s✓
1

0.9666

◆
9.7833 = 9.9510.

The accuracy of this estimation is tested with simulations (see figure S8). We found good agreement
with simulations, with 0.61 % relative error from the simulated value.

S6.1.1 Explicitly working out the case when the pMHC has only one repeated amino

acid

Let us work out the approximated estimation for the variance when the pMHC q has only one repeated
AA, namely, q belongs to the class C1 = (2, 12); and the TCR t = {t(i) = tr}kt

i=1 is a sequence of one
AA tr repeated in all its sites. Recall that the contact map for this example only has seven AAs in
t and seven AAs in q making significant contributions to the binding energy between t and q, in this
sense, kt = kq = 7.

Assume that q has the repeated AAs in sites r1 and r2, r1, r2 2 {1, 2, · · · , kq}, r1 6= r2, such that
q(r1) = q(r2). Notice that the assumption that t the same AA repeated in all its sites simplifies the
calculation of the binding energy E(t, q) in (S40) to the addition of only kq elements

U(t, q) =
X

i,j

WijEt(i)q(j)

=

kqX

j=1

 
ktX

i=1

Wij

!
Etrq(j)

=

kqX

j=1

W̃jEtrq(j) =

kqX

j=1

W̃jEj

= (W̃r1 + W̃r2)Er +

kqX

j 6=r1,r2

W̃jEj , (S47)
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where W̃j =
Pkt

i=1 Wij becomes the weight of the contribution of the pairwise interacting energy
Etrq(j) = Ej of AAs tr and q(j). Note that W̃j can be calculated directly from the addition of the
elements in the j-th column of the contact map (Wij). We assign the same symbol to the energy of
the repeated AAs Etrq(r1) = Etrq(r2) ⌘ Er. When Ej has unit variance �2 = 1 normal distribution
PDF, the resulting variance (S43) reduces to

Var
�
U [C1 = (2, 15)]

�
=

2

4(W̃r1 + W̃r2)
2 +

kqX

j 6=r1,r2

W̃2
j

3

5�2 = (W̃r1 + W̃r2)
2 +

kqX

j 6=r1,r2

W̃2
j (S48)

This variance (S48) depends on the sites of the repeating AAs {r1, r2}. Across the peptides with repeat
structure C1 in a randomly generated repertoire, sites r1 and r2 vary among peptides. However, in a
randomly generated selecting repertoire all allowed combinations for {r1, r2} are expected to be equally
occurring, therefore, under central limit theorem, the expected value of Var (U [C1]) converges to the
average of (S48) across all possible permutations for {r1, r2}; there are np =

�7
2

�
= 21 permutations

for our choice of contact map. One can use (S48) np times replacing the appropriate values of W̃r1

and W̃r1 for each permutation, and average the resulting values.
Provided the kq = 7 values of W̃j 2 {1.0000, 4.9806, 2.0100, 4.0006, 3.9999, 0.9988, 4.4190}, the

average Var (U [C1]) = 99.8467. From here, the average standard deviation is �1 = 9.9923; this value
di↵ers by 0.58 % from the estimations in simulations (see figure S7 top left panel).

S7 Point Mutated Variants: Constant TCR

To simplify calculations and to match our analysis of variance, we first assume that the TCR is a
repeated amino acid. We also assume that a self-peptide is known, so that the repeat structure
(Z1, Z2, . . . , ZM ) = (z1, z2, . . . , zM ) is also known. Let X1, X2, . . . , XM be their corresponding random
energies, with Xi IID N (0,�2). We condition on a particular point-mutant substitution at amino acid
i to j, with 1  i, j  M (determined by the location in the contact map and entity of the AA at that
position) with k total contacts. Letting

Yi,j ⌘
X

`2Q

z`X`; Q = {1, 2, ...,M} \ {i, j}, (S49)

we can express the event that the TCR survives selection on self-peptide as:

SY = [z1X1 + z2X2 + · · ·+ zMXM  Un] = [Yi,j + ziXi + zjXj  Un] . (S50)

Similarly, the event that the TCR recognizes the point-mutated neoepitope may be written as:

RY = [Yi,j + (zi � k)Xi + (zj + k)Xj > Un] . (S51)

We remark that Yi,j ⇠ N
⇣
0,�2

P
`2Q z`

⌘
with pdf fY . Conditioning on Yi,j gives us the desired

probability:

P (R | S) =
R
R P (Ry \ Sy) fY (y)dyR

R P (Sy) fY (y)dy
. (S52)

The region Ry \ Sy ⇢ R2 is located below ziXi + zjXj = Un � y and above (zi � k)Xi + (zj + k)Xj =
Un� y. Their intersection is at Xi = Xj =

Un�y
zi+zj

⌘ Cy. Expressing these lines as functions of Xi gives

`U (xi) =
Un � y � zixi

zi + zj
; `L(xi) =

Un � y � (zi � k)xi

zj + k
(S53)
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Furthermore, the joint distribution of Xi and Xj is

f(xi, xj) =
1

2⇡�2
e

�(x2
i+x2

j )

2�2 . (S54)

Thus, we may write

P (Ry \ Sy) =

Z Cy

�1

Z `U (xi)

`L(xi)
f(xi, xj)dxjdxi, (S55)

and

P (Sy) =

Z 1

�1

Z `U (xi)

�1
f(xi, xj)dxjdxi. (S56)

Numerical approximation can be implemented for integration over M ⇥ M ⇢ R2 choosing M
su�ciently large to obtain the desired convergence

Z
M

�M

R Cy

�M

R `U (xi)
`L(xi)

f(xi, xj)dxjdxi

RM
�M

R `U (xi)
�M f(xi, xj)dxjdxi

fY (y)dy. (S57)

S7.1 Point mutants on distinct TCR/peptides

If the amino acids are non-repeated on both the peptide and amino acid sides, then each of the NC

contacts in the contact map contribute an independent and statistically identical N (0,�2) energy.
Assume that there are k contacts which can change by point-mutating one peptide amino acid. Let
XNC�k denote those energies which do not change with the mutation, and Xk the pre-mutated energies
and X̃k the post-mutated energies. Their corresponding distributions are:

XNC�k ⇠ N
�
0, (NC � k)�2

�
, Xk, X̃k ⇠ N

�
0, k�2

�
. (S58)

Let F`(x) and f`(x) denote the CDF and PDF of normal random variables with standard deviation
�
p
`. The conditional probability that a point-mutated antigen is recognized by a TCR conditioned

on that TCR not recognizing the non-mutated antigen may be expressed as:

P
⇣
XNC�k + X̃k > Un | XNC�k +Xk  Un

⌘
. (S59)

Conditioning on the distributions of Xk, X̃k, and noting that the joint distributions factor for inde-
pendent random variables, we have, by definition of conditional probability:

Z

R

Z

R
P (Un � x̃ < XNC�k < Un � x) fk(x̃)fk(x)dx̃dx

.
P (XNC�k +Xk  Un) . (S60)

The denominator of Eq. S60 is just FNC (Un). The numerator can be further simplified as:

D =

Z

R

Z

R
[FNC�k (Un � x)� FNC�k (Un � x̃)] · [x<x̃] fk(x̃)fk(x)dx̃dx, (S61)

where

E =

⇢
1, on E;
0, on Ec.

(S62)
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Thus,

D =

Z

R

Z 1

x

⇣
FNC�k(Un � x)� FNC�k(Un � x̃)

⌘
fk(x̃)fk(x)dx̃dx (S63)

=

Z

R

⇣
FNC�k(Un � x) [1� Fk(x)]�

Z 1

x
FNC�k(Un � x̃)fk(x̃)dx̃

⌘
fk(x)dx. (S64)

Observing that
Z

R
FNC�k(Un � x)fk(x)dx =

Z

R
P (XNC�k  Un � x) fk(x)dx (S65)

= P (XNC�k  Un +Xk) = Fk(Un), (S66)

so that Eq. S64 reduces to

FNC (Un)�
Z

R

✓
FNC�k (Un � x)Fk(x) +

Z 1

x
FNC�k (Un � x̃) fk(x̃)dx̃

◆
fk(x)dx. (S67)

Plots of this conditional recognition probability are plotted as a function of thymic negative selection
cuto↵ Un using NC = 21 in 3QIB↵ CDR3 for a variety of contacts assumed in the peptide in Fig. S9d.

In the main manuscript we discussed how the point-mutant recognition probability is influenced
by selection stringency. We follow-up that discussion with a more detailed explanation. Selection
stringency is driven by many factors including the a�nity threshold, size of the selecting repertoire,
diversity of the selecting repertoire, etc, each of which bias the post-selection TCRs towards non self-
reactivity. At fixed selection repertoire size, say Nq = 104, lenient selection (high negative selection
survival probability) is usually accomplished by choosing a high a�nity threshold (Un). This case
gives rise to low point-mutant recognition probability, because of the increased baseline unlikeliness
of any TCR binding to a pMHC, Fig. S9. In this regard, recall that we use for defining successful
binding the same threshold as used in the negative selection step. On the other end, stringent selection
(low negative selection survival probability) means having a low a�nity threshold. Now, the baseline
binding probability is higher, giving a TCR a better chance to recognize a point mutant (U(t, q̃) > Un),
driving higher point-mutant recognition probability. In other words, the closeness of point mutants
to self-peptides reduces the chances of detection by roughly a fixed amount and hence the resulting
detection curve roughly tracks the baseline binding probability.

S8 Self-Averaging of pairwise energies

Given a particular contact map W, symmetric pairwise amino acid interaction matrix E, and given
random TCR {t1, . . . , tn} and peptide {p1, . . . , pn}, we can represent the total energy of interaction as
a sum of (fixed!) energies ek 2 E, with corresponding repeats rk such that

P
k rk = |W| = NC . We

assume there are N distinct repeats so that the energy is given by

U(t, q) =
NX

k=1

rkek. (S68)

Conditional on a realized repeat pattern and energy choices {rk, ek}Nk=1, we are interested in under-
standing the mean and variance of first- and second-moments of U over the set of possible amino
acid choices. Because each ek may take values in E with |E| ⌘ M = 210, we will need to sum over
all realizations of these pairs. Let F be the set of all ordered realizations of the {e1, . . . , eP } energy
terms taking values in E without replacement. Then |F| = M !/(M �N)! and each ordered realization
F 2 M is equally likely so that P (F ) = 1/|M|.
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Denote by AF [·] the operator which averages over all possible realizations of F 2 F . In contrast
with the expectation operator h·i assigning a real number to the random variable U , AF [U ] is itself a
random variable. Averaging U over the finite realizations in F gives,

AF [U ] =
1

|F|
X

F2F

NX

k=1

rkek =
NX

k=1

rk · 1

|F|
X

F2F
ek. (S69)

Note that for fixed k,
X

F2F
ek =

(M � 1)!

(M �N)!

MX

i=1

ei, (S70)

since taking the sum of ek over all M !/(M�N)! possible sequence realizations gives (M�1)!/(M�N)!
repeats of each of M possible choices for ek. This implies that the right hand side of Eq. S69 becomes

AF [U ] =
NX

k=1

rk · 1

|F|
(M � 1)!

(N � 1)!
Sk,M =

NX

k=1

rk · Sk,M/M, (S71)

where Sk,M is a sum of M IID N (0,�2) random variables. Thus, for � ⌘
PN

k=1 r
2
k/M , we have that

AF [U ] ⇠ N
 
0,�2

NX

k=1

r2k
M

!
⌘ N

�
0, ��2

�
. (S72)

Note that this quantifies the deviation from a much simpler calculation of the expected value assum-
ing the fixed energies ek in Eq. S68 are idealized by IID random variables given by their common
distribution Ek ⇠ N

�
0,�2

�
, which clearly yields

*
NX

k=1

rkEk

+
= 0 = hAF [U ]i . (S73)

In the most extreme case, N = 1 and rk = NC = |W| so that � = N2
C/M . Using Eq. S72 this

equates to � = 1.904 for 20 contacts. A majority of cases are however far from here. As examples
utilizing the 3QIB↵ system with n = 7, the partitions whose union occurs with probability > 99%
and their associated variance scales are given in Table S3. Because these factors scale the variance so
tightly, it is reasonable to represent the distribution AF [U ] by its expected value, which corresponds
to the expected value of the idealized quantity with ek replaced by Ek as in Eq. S73.

Partition (17) (2, 15) (22, 13) (3, 14) (3, 2, 12)
� 0.0324 0.0428 0.0524 0.0620 0.0713

Table S3: Partitions represented by their repeat structure are given with their corresponding variance
scales � as in Eq. S72.

We desire to investigate whether an analogous result holds for the second moment calculation.
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That is, we wish to compare AF
⇥
U2
⇤
with

⌦
AF

⇥
U2
⇤↵

and Var
�
AF

⇥
U2
⇤�
. Note that,

AF
⇥
U2
⇤
= AF

2

4
NX

k=1

(rkek)
2 +

X

i 6=j

rirjeiej

3

5 (S74)

=
NX

k=1

r2k · 1

|F|
X

F2F
(�ẽk)

2 +
X

i 6=j

rirj ·
1

|F|
X

F2F
(�ẽi)(�ẽj), for ẽk = ek/� ⇠ N (0, 1) (S75)

= �2
NX

k=1

r2k
1

|F| ·
(M � 1)!

(M �N)!
S̃k,M + �2

X

i 6=j

rirj ·
1

|F| ·
(M � 2)!

(M �N)!
T̃k,M , (S76)

= �2
NX

k=1

r2kS̃k,M/M + �2
X

i 6=j

rirj T̃k,M/M(M � 1), (S77)

for S̃k,M ⇠ �2(M) = Gamma(M/2, 2) the sum of M IID squared standard normals, and with T̃k,M the
sum of M(M�1) IID random variables of the form XY , where X,Y are IID standard normals. Unlike
in the first moment case, we cannot represent the second sum as a standard distribution. However, we
can still evaluate the mean and variance of AF

⇥
U2
⇤
. From the above, Eq. S76 may be written in the

form

AF [U ]2 = �2

0

@
NX

k=1

X̃k +
X

i 6=j

Ỹi,j

1

A (S78)

with
D
X̃k

E
= r2k, Var

⇣
X̃k

⌘
= 2r4k/N ;

D
Ỹi,j

E
= 0, Var

⇣
Ỹi,j

⌘
=

M(M � 1) · 1
[M(M � 1)]2

=
1

M(M � 1)
. (S79)

or alternatively,
*

NX

k=1

X̃k

+
=

NX

k=1

r2k, Var
 

NX

k=1

X̃k

!
=

2

M

NX

k=1

r4k/M ; (S80)

*
X

i 6=j

Ỹi,j

+
= 0, Var

0

@
X

i 6=j

Ỹi,j

1

A =
N(N � 1)

M(M � 1)
. (S81)

Thus, we may write

D
AF [U ]2

E
= �2||r||22; Var

⇣
AF [U ]2

⌘
=

�4

M

✓
2||r||44 +N

N � 1

M � 1

◆
, (S82)

using the usual lp-norm

||r||p ⌘
 

NX

k=1

|rk|p
!1/p

. (S83)

Now, we may calculate the coe�cient of variation, cv, by:

cv =

r
Var

⇣
AF [U ]2

⌘

D
AF [U ]2

E (S84)

=

 r
2

M

!s
||r||44
||r||42

+
N(N � 1)

(M � 1)||r||42
. (S85)
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We may achieve a convenient upper-bound on cv by

cv 
 r

2

M

!s

max
r

||r||44
||r||42

+max
r

N(N � 1)

(M � 1)||r||42
(S86)

For the first quantity, we observe that

||r||44 =
NX

k=1

r4k 
NX

k=1

r4k +
X

i 6=j

rirj =

 
NX

k=1

r2k

!2

= ||r||42 (S87)

with equality holding in Eq. S87 whenever there is a single r = NC , which implies that the left
maximum of Eq. S86 is equal to 1. In contrast, the denominator of the second term is minimized
whenever all partitions are unique so that rk = 1, for k = 1, . . . , N = NC , and

P
k rk = NC = ||r||22.

In this case, ||r||42 = N2, which implies that the right maximum of Eq. S86 is 1/(M � 1), ultimately
yielding

cv 
r

2

M � 1
= 9.78% (S88)

for M determined by the 20-by-20 symmetric amino acid energy matrix. Estimates of cv for the most
commonly occurring partitions are given in Table S4. Eq. S88 represents a conservative bound for
most common partitions. As in the case of first moment calculations, we obtain agreement in the
expectation taken over the finite realized ek and the idealized distributions Ek:

* 
NX

k=1

rkEk

!2+
= �2

NX

k=1

r2k =
⌦
AF

⇥
U2
⇤↵

(S89)

This, together with the small coe�cient of variation implies that AF
⇥
U2
⇤
may also be associated

with its mean value by neglecting a small amount of fluctuation relative to its mean.

Partition (17) (2, 15) (22, 13) (3, 14) (3, 2, 12)
cv 3.74% 4.99% 5.26% 6.92% 6.48%

Table S4: Partitions represented by their repeat structure are given with their corresponding coe�cient
of variation, cv, calculated from Eq. S85.

S9 Figures
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Figure S1: Number of contacts in a contact map increases with increasing values of distance cut-o↵,
rmax. Contact maps for CDR3↵-pMHC (top row) and CDR3�-pMHC (bottom row) interfaces of
crystal structure PDB ID 3QIB are plotted at four cut-o↵ distances, rmax = {6.5, 7.5, 8.5, 9.5} �A. As
rmax increases, the distance at which two AAs are considered to be in contact also increases (S2),
resulting in more contacts for higher values of rmax.
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Figure S2: The topology of a contact map is mostly preserved when a TCR binds to MHC molecules
with the same allele restriction. In both cases, PDB ID 4MAY (left) and 4GRL (right), the contact
maps show a similar topology. In these contact maps, human T cells hy.1B11 are bound to MHC
type II HLA-DQ1 molecules and show cross-reactivity to two di↵erent antigens: Herpes simplex virus,
UL15154�166 (4MAY); and Pseudomonas aeruginosa, PMM260�274 (4GRL).
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Figure S3: The contact map topology di↵ers for two di↵erent TCR-MHC pairings even under the MHC
restriction. Crystal structures PDB ID 6PX6 and PDB ID 6PY2 correspond to two di↵erent human
TCRs, T1005.2.56 and T594, respectively, bound to the same MHC type II HLA-DQ2.2 molecule
presenting the same DQ2.2-glut-L1 Triticum aestivum peptide.
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Figure S4: Contact map topology is mostly preserved for the same TCR-MHC pairing. The four
contact maps shown belong to crystal structures of human 1E6 TCR bound to MHC type I HLA-A02,
the peptides presented by the MHC complex in these four cases have common AAs G, P, and D in
sites 4-6 (highlighted in blue).

Figure S5: Di↵erence between the contact maps of CDR3↵-pMHC (left) and CDR3�-pMHC (right)
binding interfaces, obtained by directly subtracting one contact map matrix from the other.
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Figure S6: TCR-pMHC energy U(t, q) variance scales with the number of contacts. Analytical vs
real variances as a function of total contacts. Variance scale as a function of contact number. This
plots the scale factor to �2 as a function of total contact number. Agreement is seen for summing
over all possible partitions (black dots, calculation given by Eq. S34) and the analytic solution (blue
dashed line, calculation given by Eq. S37). These values are compared to exact simulations involving
variances in the contact maps of real examples.
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Figure S7: Normal distribution PDF for TCR-pMHC binding energy in the four most likely repeat
structures from a randomly generated pMHC repertoire. Each repeat structure cn, n = 1, 2, 3, 4, has a
probability shown in parenthesis. In each panel, blue dots are simulated values from TCRs undergoing
negative selection against pMHCs with the same repeat structure, dashed black lines show theoretical
predictions, and solid red lines are best least-square fit.
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Figure S8: Normal distribution PDF for TCR-pMHC binding energy between TCRs of all-repeated
AAs against a randomly generated selecting peptide repertoire. Crystal structure 3QIB’s CDR3↵-
pMHC interface is used as the contact map. Blue dots are simulated data, solid red line corresponds
to least-square fit and dashed black line is the theoretical prediction.
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(a) (b)

(c) (d)

Figure S9: Point-mutant recognition probability changes with number of mutated contacts and with
the size of the selecting repertoire. Panel S9a shows the change in recognition probability when the
point mutation occurs in a site with n = {1, 2, 5, 10} contacts, with overall probability increasing
with n due to more mutated contacts making the mutant peptide appear more like a foreign antigen.
Panel S9b shows good agreement between predicted point-mutant recognition probability (dashed
lines) and simulations (dots) for n = 1 and n = 5 mutated contacts, peptides are generated with no
repeated amino acids in their sequences. Panels S9c and S9d show simulated point-mutant recognition
probabilities at Nq = 1 (blue), 10 (orange), 102 (green), 103 (red), and 104 (purple) selection repertoire
sizes, with point mutations a↵ecting n = 1 (dots) and n = 5 (triangles) contacts in each Nq case; in S9c
peptide sequences are generated with no repeated amino acids, whereas in S9d the peptide sequences
are randomly generated.
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