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a b s t r a c t 
It is now well-established that the host’s adaptive immune system plays an important role in identify- 
ing and eliminating cancer cells in much the same way that intracellular pathogens are cleared during 
an adaptive immune response to infection. From a therapeutic standpoint, the adaptive immune system 
is unique in that it can co-evolve alongside a developing tumor. Tumor acquisition of immune evasive 
phenotypes, such as class-I MHC down-regulation, remains a major limitation of successful T-cell im- 
munotherapy. Here, we consider a population dynamical model coupling tumor and adaptive immune 
compartments in order to study the dynamics and survival of an evolving threat when faced with adap- 
tive immune pressure. We demonstrate that predicted optimal growth strategies depend on whether or 
not the threat may acquire an immune-evasive phenotype as well as the mode of immune detection. 
We parameterize adaptive immune functioning by T-cell turnover and repertoire diversity and predict 
that decreases in the latter quantity which occur in advanced age may substantially affect the ability 
to recognize, and therefore control, an immune evasive threat like cancer. This framework recapitulates 
general features of age-dependent AML incidence, thereby providing a probable association between can- 
cer frequency and adaptive immune functioning. Lastly, we quantify therapeutic efficacy of adjuvant im- 
munotherapeutic strategies, and predict their benefits and limitations with regard to handling immune 
evasion. Our model generates survival behavior consistent with known growth-dependent characteris- 
tics, and serves as a first attempt at modeling stochastic cancer evolution alongside an adaptive immune 
compartment. 

© 2018 Elsevier Ltd. All rights reserved. 
1. Introduction 

The lack of successful treatment options that lead to durable 
remission outcomes still remains an ongoing challenge for cur- 
ing many malignancies. However, there have been significant ad- 
vances made most recently in targeted and immune therapeutic 
strategies ( Couzin-Frankel, 2013 ). It is now well-established that 
the cytotoxic (CD8 + ) T-cell compartment of the human adaptive 
immune system plays an integral role in immunoediting, and tu- 
mor progression therefore necessarily requires successful evasion 
of adaptive immune surveillance ( Dunn et al., 2002; Fridman et al., 
2011 ). More recently, immunotherapy has become one of the most 
promising areas of cancer research and treatment. This general ap- 
proach encompasses strategies aimed at enhancing the patient’s 
immune system via tumor antigen vaccines ( Fritsch et al., 2014; 
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Hellmann and Snyder, 2017; Ott et al., 2017; Sahin et al., 2017 ), im- 
mune checkpoint inhibition ( Alsaab et al., 2017; Leach et al., 1996 ), 
and introduction of tumor-specific immune cells, as is the case in 
chimeric antigen receptor (CAR) T-cell therapy ( Martin et al., 2016; 
Sadelain et al., 2017; Wang and Rivière, 2016 ). 

Despite these advances, tumors may acquire treatment-resistant 
clones during disease progression ( Iwasa et al., 2006 ), thus lim- 
iting treatment efficacy. Cancer cells exploit a variety of strate- 
gies that facilitate CD8 + T-cell immune evasion ( Bronte and Mo- 
cellin, 2009 ), including up-regulation of immune inhibitory genes 
like programmed death-ligand 1 (PD-L1) and human leukocyte 
antigen (HLA)-G ( Driessens et al., 2009; Herbst et al., 2014; Lin 
and Yan, 2015; Sheu and Shih, 2010 ), reduced immunoproteasome 
expression ( Tripathi et al., 2016 ), and complete evasion of CD8 + 
recognition via loss of major hisocompatibility class-I (MHC-I) ( del 
Campo et al., 2014; Carretero et al., 2008; Garrido et al., 2016; 
Straten and Garrido, 2016 ). Such evasive tactics occur alongside ac- 
tive immunosurveillance by an adaptive T-cell repertoire. Naïve T- 
cell turnover can, in theory, lead to recognition of a dividing cancer 
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cell population prior to acquisition of an immune-evasive pheno- 
type. Previous studies have considered systems-level interactions 
between the tumor and host adaptive immune system ( Andrew 
et al., 2007; Khailaie et al., 2013; Kirschner and Panetta, 1998; Nani 
and OÇ§uztöreli, 1994; Sontag, 2017 ), while a separate effort has 
gone into understanding the acquisition of drug-resistant subpop- 
ulations during clonal evolution ( Iwasa et al., 2006; Michor et al., 
2004 ). At present, the temporal dynamics of acquired immune eva- 
sion on tumor development under adaptive immune pressure re- 
mains uncharacterized. Filling this gap is of fundamental impor- 
tance to better understand tumor progression. Additionally, an im- 
proved quantitative framework for describing the successes, and 
failures, of adaptive immune targeting of cancer cells would enable 
more accurate predictions of treatment success rates. 

Here, we propose a foundational model of the co-evolution be- 
tween an adaptive immune system and an evading threat such 
as cancer whereinaffected cells may be recognized by the im- 
mune system, but may also acquire an immune-evasive phenotype. 
We account for key empirical behaviors, including the growth- 
threshold conjecture which predicts that initiation of an immune 
response depends on threat net growth rate instead of abso- 
lute threat size ( Arias et al., 2015; Grossman and Paul, 1992; Jo- 
hansen et al., 2008; Pradeu et al., 2013 ). For threats like can- 
cer which may acquire an immune evasive phenotype, we show 
that the model supports the experimental observation of ‘sneak- 
through’ wherein threats with either large or small net growth 
rates have a preferential advantage over their intermediate-growth 
counterparts ( Bocharov et al., 2004 ). We apply this model to study 
acute myeloid leukemia (AML) incidence as a function of immune 
turnover and repertoire diversity, and accurately characterize in- 
creased incidence as a result of an aging immune system in ad- 
dition to chronic immunosuppression. We conclude our analysis 
by quantifying the benefit of certain types of T-cell immunother- 
apy and predicting treatment-specific advantages based on tumor 
growth rates and patient immune status. 
2. Model development 

We conceptualize the dynamics between a foreign threat and 
the host immune system as a time-continuous birth process, where 
the state variable, X , represents the total number of cancerous or 
infected cells. In our model, these cells grow at net rate r per cell 
until either exceeding a critical size, M " 1, or until the immune 
system mounts a response at a (possibly random) population size 
X = m and time S 1 . If recognized, the population undergoes net 
death at a per-cell rate of ˜ r = d − r so that d characterizes per- 
cell immune system killing rate. We assume d is large enough to 
handle threats with a variety of growth rates so that r < d always. 
States 0 and M + 1 are absorbing. A more precise model would 
separately track birth and death rates both before and after treat- 
ment. We have opted for this simpler form to enable analytic in- 
vestigations. 
2.1. Static threats 

Static threats are those unable to acquire an immune evasive 
phenotype. These dynamics are most appropriate for investigating 
intracellular microbial pathogens that grow, divide, and infect host 
cells. In this case the process evolves according to the following 
transitions: 
t < S 1 : x → x + 1 at rate rx 
t ≥ S 1 : x → x − 1 at rate ˜ r x (1) 

2.2. Dynamic threats 
Dynamic threats, including cancer, may randomly acquire an 

immune evasive phenotype that enables its members to avoid im- 
mune recognition targeting the initial population. We therefore 
consider two cell populations: a non-evasive population, X 1 , and an 
immune evasive population, X 2 that broadly represents cells adopt- 
ing a variety of CD8 + T-cell evasion strategies commonly observed 
during cancer progression. We assume that immune evasive cells 
are randomly acquired at rate µ& 1 per cell division. Transitions 
are described by: 
t < S 1 : 

(x 1 , x 2 ) → (x 1 , x 2 + 1) at rate µrx 1 + rx 2 
(x 1 , x 2 ) → (x 1 + 1 , x 2 ) at rate (1 − µ) r x 1 ≈ r x 1 

t ≥ S 1 : 
(x 1 , x 2 ) → (x 1 , x 2 + 1) at rate µrx 1 + rx 2 
(x 1 , x 2 ) → (x 1 − 1 , x 2 ) at rate [ d − (1 − µ) r] x 1 ≈ ˜ r x 1 (2) 

We assume that successful immune responses occur quickly and 
are not limited at large population sizes for both the static and 
dynamic cases. 
2.3. Detection limit 

We assume that immune recognition at size X 1 = m may only 
occur after the population reaches a lower detection limit, m 0 , 
based either on the population size or the population total net 
growth rate. We will refer to the former assumption as the size 
threshold or size-limited case ( m 0 = m c ), and the latter as the 
growth-threshold or growth-limited case ( m 0 = m 0 (r) such that 
the total net growth rate first exceeds R ), where appropriate. The 
growth-threshold conjecture is supported by empirical and theo- 
retical observations ( Arias et al., 2015; Grossman and Paul, 1992; 
Johansen et al., 2008; Pradeu et al., 2013; Sontag, 2017 ). We will 
argue later that a size-limited model is perhaps most appropriate 
for modeling CAR T-cell infusions, as CAR T-cell self-activation is 
engineered directly in this case. 
2.4. Recognition mode 

In the primary case of interest we model the response of an 
adaptive immune compartment whose present and future CD8 + 
T-cell repertoire may contain a T-cell receptor (TCR) capable of 
recognizing an immune susceptible threat X 1 . There is contin- 
ual opportunity for the sensitive population to be recognized as 
its growth trajectory exceeds m 0 and continues growing to final 
size M . We refer to this case hereafter as stochastic or adaptive 
recognition . Recognition depends on both the T-cell repertoire and 
turnover of new T-cell clones. The population at size m 0 evades the 
current immune repertoire, due in part to a lack of sufficient levels 
of detectable antigen or recognizing T-cells, with a background es- 
cape probability p b , which we use to represent the clonal diversity 
of the TCR repertoire (larger p b implies lower diversity). We model 
the arrival of a recognizing T-cell clone as a Poisson process with 
rate k , corresponding to the thymic turnover rate of naïve CD8 + 
T-cells. It is also convenient to analyze a simpler process wherein 
a growing threat is (deterministically) recognized at threshold size 
m 0 , which applies for example to innate immune recognition of, or 
memory reactivation to, a previously encountered threat. We refer 
to this case as deterministic recognition . 
2.5. Mathematical analysis 

Here we provide a broad outline of our general strategy, with 
the primary goal of calculating the probability that a threat either 
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escapes immune detection, or acquires an evasive phenotype, or is 
controlled and subsequently cleared by the immune system. Com- 
plete derivations are included in the SI. We let E e denote the event 
that a threat escapes recognition and exceeds size M with corre- 
sponding probability P e . For dynamic threats, E µ denotes the event 
that an immune evader arrives with probability P µ. All events may 
be partitioned by: E e, µ ≡ E e ∩ E µ, E e,µc ≡ E e ∩ E c µ, E e c ,µ ≡ E c e ∩ E µ, 
and E e c ,µc ≡ E c e ∩ E c µ with corresponding probabilities P e, µ, P e,µc , 
P e c ,µ, and P l (a threat loses if it neither escapes nor acquires an 
evader, see SI Sec. S5). 

P e is determined by relating the immune turnover and size pa- 
rameters to recognition probabilities ( Section 3.1 ). This may be ob- 
tained by solving for the probability that recognition occurs at size 
m ≥ m 0 , denoted by p r ( m ; m 0 ) (SI Section S3). The calculation of 
P e c ,µ is more involved, and so we begin first by evaluating this 
quantity under deterministic recognition at fixed size m , denoted 
P e c ,µ(m ) . We recall that S 1 denotes type-1 arrival time. If τ 2 is the 
type-2 arrival time, and ˜ S 1 the type-1 extinction time, then the 
probability of interest can be expressed as 
P e c ,µ(m ) = P (τ2 < S 1 ∣∣ X 1 (S 1 ) = m )

+ P (S 1 ≤ τ2 < ˜ S 1 ∣∣ X 1 (S 1 ) = m ), (3) 
with both terms amenable to exact calculation by conditioning on 
the exponential inter-arrival times of each birth/death event (SI 
Section S5.1). The corresponding probability under adaptive recog- 
nition with variable detection size, denoted P e c ,µ(m 0 ≤ m ≤ M) , 
may be calculated by taking weighted averages of each estimate 
conditioned on size m recognition via 
P e c ,µ(m 0 ≤ m ≤ M) = M ∑ 

m = m 0 P e c ,µ(m ) · p r (m ; m 0 ) , (4) 
provided m 0 < M (SI Section S5.3). In all cases, P l is calculated in- 
directly via 
P l = 1 − (P e c ,µ + P e ) . (5) 
We obtain a solution in the adaptive recognition mode by weight- 
ing by the distribution of recognition sizes, calculated subse- 
quently. 

Under deterministic recognition, we also characterize the mean 
first time of type-2 arrival conditioned on acquired evasion, given 
by T µ(m ) ≡ E [ τ2 | τ2 < ˜ S 1 ] . Using the usual indicator random vari- 
able notation 
I [ τ2 < ̃ S 1 ] = {1 , τ2 < ˜ S 1 ;

0 , τ2 ≮ ˜ S 1 . (6) 
This quantity may be calculated using the definition of conditional 
probability 
T µ(m ) = E [ τ2 I [ τ2 < ̃ S 1 ] ] 

P (τ2 < ˜ S 1 ) , (7) 
and is derived to first order in µ following a similar strategy 
for characterizing P e c ,µ, here instead assuming each inter-arrival 
time is well-characterized by its mean value (SI Section S5.2). This 
framework permits analytical comparisons between predicted eva- 
sion behavior for the various assumptions on detection limit and 
recognition mode. We apply this framework to study AML, a hema- 
tological malignancy, as our model disease due to its low muta- 
tion rate, relative immune accessibility, and rapid growth. We com- 
pare model predictions to AML incidence data, comparing our the- 
ory with the alternative ‘multi-stage’ theory of cancer incidence 
( Armitage and Doll, 1954 ), and conclude by expanding the analysis 
to predict post-immunotherapy treatment success probabilities. 

Fig. 1. Dynamics under adaptive immune detection. Stochastic population trajecto- 
ries obeying Eq. (1) that are ultimately recognized and eliminated. Red trajectories 
illustrate recognition at detection limit m 0 (dashed line) ( r = 0 . 1 , d = 0 . 2 , m 0 = 
10 2 , p b = 0 . 75 , k = 0 . 1 ). (For interpretation of the references to color in this figure 
legend, the reader is referred to the web version of this article). 
3. Tumor progression 

The following sections present the main findings of our analy- 
sis. Full mathematical details are provided in the SI. In an effort to 
organize subsequent analyses, we subdivide outcomes of the pro- 
cess based on relevant events. 
3.1. Adaptive repertoire and detection limit determine escape 
probability 

This section focuses on static threats (P µ = 0) . If recognition is 
deterministic, then P e = 0 trivially. Adaptive recognition in contrast 
permits a threat to grow past minimal detection before recognition 
and subsequent elimination ( Fig. 1 ), as long as m 0 < M (for large 
simulation trajectories illustrating mean-variance behavior, see Fig. 
1 in George and Levine, 2018 ). In this case a population’s sur- 
vival probability is inversely related to its mean sojourn time on 
{ m 0 , . . . , M} , given by 
"t s (r) ≈ log (M/m 0 )r −1 . (8) 
The probability of recognition at size m is given by 
p r (m ; m 0 ) ≈

 
 
 

0 , m < m 0 ;
1 − p b e − k 

rm 0 , m = m 0 ;
p b (1 − e − k 

rm )(m 0 
m ) k 

r , m 0 < m ≤ M. (9) 
From this formula, we observe that the escape probability up to 
size m > m 0 is 
p e (m ; m 0 ) = p b (m 0 

m 
)

k/r . (10) 
It is clear from the above that optimal growth rates of immune 

evaders balance the size of earliest detection with the amount of 
time spent under immunosurveillance. Faster growing threats al- 
ways have higher escape probabilities if detection is size-limited. 
However, under growth-limited detection the existence of a slow- 
growth window r ∈ (0, eR / M ) enables threats with slow growth 
rates to increase the likelihood of escape by minimizing surveil- 
lance time (Table S1). Thus, growth-limited detection of a static 
threat demonstrates sneak-through of threats with small growth 
rates ( Arias et al., 2015; Bocharov et al., 2004; Grossman and Paul, 
1992; Johansen et al., 2008; Pradeu et al., 2013 ). Analogously, if 
m c > M in the size-limited case, then clearly threats of all growth 
rates escape detection. Cumulative recognition probabilities, given 
by 1 − p e (m ; m 0 ) , are presented for a variety of immune param- 
eters ( Fig. 2 ), indicating the relevance of repertoire diversity and 
T-cell turnover to tumor recognition. 
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Fig. 2. Growth-limited cumulative recognition. Cumulative recognition probability 
1 − p e (m ; m 0 ) as a function of population size m and relative growth rate r / d for 
various values of immune turnover (rows bottom-to-top: k = { 10 −1 , 10 −2 , 10 −3 } ) 
and repertoire diversity (columns left-to-right: p b = {0.5, 0.75, 1.0}) ( d = 0 . 2 , R = 
10 2 ). 

Fig. 3. Immune evader arrival probabiity and mean arrival time. (A) Immune evader 
arrival probability and (B) mean time of evader arrival for both growth-limited 
(blue, R = 10 2 ) and size-limited (red, m c = 10 3 ) detection assumptions ( d = 0 . 2 , 
µ = 10 −6 ). 
3.2. Cancer sneak-through predicted by growth-limited detection 
exclusively 

Non-escape E c e occurs with certainty under deterministic recog- 
nition. However, a dynamic threat may acquire an immune evader 
(event E e c ,µ). The probability of evader acquisition as a function of 
deterministic detection at size m is given by 
P e c ,µ(m ) = 1 − (1 − µ) m −1 ( d − (1 − µ) r 

d − (1 − 2 µ) r 
)

m . (11) 
This arrival probability is plotted in Fig. 3 alongside mean evader 
arrival times as a function of net growth rates r for size- and 
growth-limited detection assumptions (see SI for full details). Im- 
mune evaders rarely emerge for slow-growing threats under size- 
limited detection, and only do so on average over large time 
scales. This contrasts with growth-limited detection, for which 
immune evaders arrive with high probability for both large and 
small r , and do so with comparable time scales of arrival. Eva- 
sion behavior under the latter detection mode predicts for the 
first time a novel mechanism of sneak-through resulting exclu- 
sively from acquired immune evasion. A corollary to this implies 
that enhancements to the rate of immune killing (via increased 
d ) alone cannot eliminate the risk of immune evader arrival, and 
the effects of such immunomodulation are diminished for slow- 
growth cancers. This prediction corroborates known experimental 
observations linking growth-rate with immune resiliency, includ- 

Fig. 4. Probability estimates of relevant immune outcomes. Dynamic threat escape, 
evasion, and loss probabilities as a function of relative net growth rate r / d for var- 
ious values of immune turnover (rows bottom-to-top: k = { 10 −1 , 10 −2 , 10 −3 } ) and 
repertoire diversity (columns left-to-right: p b = {0.5, 0.75, 1.0}) ( d = 0 . 20 , µ = 10 −6 , 
R = 10 4 , M = 10 6 ). 
ing slow-growth melanoma variants with known T-cell exclusion 
( Spranger et al., 2015 ), and are reminiscent of the state of reduced 
proliferation with concomitant survival phenotypes characteristic 
of drug tolerant persisters ( Chisholm et al., 2015 ), as well as the 
observed concave relationship between viral growth rate and peak 
CD8 + T-cell response ( Bocharov et al., 2004 ) . We focus next on 
the case of a dynamic threat under adaptive immune recognition 
in subsequent sections. 
3.3. Acquired immune evasion and escape in the setting of 
compromised adaptive immunity 

In contrast with the prior examples, a dynamic threat faced 
with an adaptive immune system has nontrivial likelihood of 
events E e and E µ. We focus here on escape E e , immune eva- 
sion E e c ,µ, and cancer loss (immune victory) E e c ,µc with respec- 
tive probabilities P e , P e c ,µ, and P l . A similar analysis (Eq. S49) that 
marginalizes over the deterministic detection sizes in Eq. (11) is 
depicted for various immune parameters under growth-limited de- 
tection ( Fig. 4 ). Under competent immune surveillance (high k , low 
p b ) disease stems almost exclusively from acquired immune eva- 
sion, and the majority of threats are expected to be cleared. How- 
ever, as turnover rate and repertoire diversity are compromised, 
immune escape is predicted to dominate over acquired evasion in 
its overall contribution to cancer progression. Here, the overall pre- 
dicted success probability of disease clearance, P l , is again maximal 
for large and small r . In all cases, sneak-through is observed for 
slow growth threats, further supporting the growth-threshold con- 
jecture under adaptive immune surveillance. 

The dependence of disease mechanism on immune status pre- 
dicts an essential role of immune recognition in the ability to 
control adaptive threats. Motivated by this, we apply our model 
to predict cancer incidence as a function of an aging immune 
compartment. We select AML as a representative case due to the 
large amount of available incidence data, its low mutation bur- 
den, association with advanced age, and, unlike solid malignan- 
cies, relative accessibility by the adaptive immune compartment 
( Alexandrov et al., 2013 ). Empirically observed decreases in thymic 
output in middle age and T-cell repertoire diversity in advanced 
age ( Naylor et al., 2005 ) are modeled by decreasing Hill func- 
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Fig. 5. AML incidence vs immune function. (A) Bar plot of empirical data (gray) is 
compared to model-derived AML estimate P e + P e c ,µ (red dashed line) that assumes 
constant cancer incidence and decreasing immunity vs age. Thymic turnover rates 
and effective clone sizes are modeled as Hill functions. Escape probability is ap- 
proximated using p b ≈ 1 - (1 − ˜ p ) N t , where ˜ p ∼ 10 −6 is the probability of a single 
TCR recognizing the immune sensitive population and N t is the effective number 
of distinct clones (See SI for details). This estimate is compared to the least squares 
best-fit models of multi-stage incidence (solid lines), where incidence is assumed to 
be approximately proportional to t n , for age t and n number of hits.; (B) Predicted 
cumulative incidence over 10 years assuming chronic immunosuppression (1 - p b 
and k scaled by α = 0.9) and mean age of 43 prior to treatment. 
tions of k and 1 − p b , respectively. While the absolute mapping 
between recognition probabilities via p r ( m ; m 0 ) and TCR diver- 
sity and turnover rates remains an open problem, we may use 
the known relative decreases in each of these parameters as a 
function of age in order to estimate potential immune impair- 
ment. The model assumes equal cancer risk for every age and es- 
timates escape probability by incorporating the total number of T- 
cell clones, N t , and the probability of a single T-cell recognizing in- 
dividual antigenic peptide, ˜ p , via p b = (1 − ˜ p ) N t as done previously 
( George et al., 2017 ). Incidence (defined as 1 − P l ) for a particular 
set of parameters explains empirical AML data well, outperforming 
the standard multi-hit model of cancer incidence ( Fig. 5 A). 

The model agreement with age-specific incidence data 
( Cancer Research UK, 2013 ) would suggest that age-incidence 
may be partitioned into three categories: Early, unfortunate dis- 
ease due to the (rare) arrival of immune evaders that escape 
immune detection, slightly increased incidence in middle age sec- 
ondary to lower turnover rates, and dramatic, late-onset increases 
in risk resulting from diminished TCR repertoire diversity. Our 
results are consistent with recent independent effort s to quantify 
immune-related cancer incidence ( Palmer et al., 2018 ). The same 
parameter choice, assuming mild ( ∼ 10%) decreases in T-cell 
recognition, is applied to characterize predicted AML incidence 
in the setting of chronic immunosuppression ( Fig. 5 B) and we 
find general agreement with large ( n ∼ 3 · 10 5 ) empirical datasets 
of heart and lung transplant recipients and healthy controls 
( Offman et al., 2004 ). 
4. Applications to immunotherapy 

We now turn to the setting of adjuvant immunotherapy with 
the goal of estimating the therapeutic benefit of chimeric antigen 

receptor (CAR) T-cell and tumor antigen vaccination therapies. We 
introduce E to denote the event of overall disease elimination with 
corresponding probability equal to the sum of tumor loss proba- 
bility due to immune system elimination ( P l above) and treatment 
probability, denoted by P T . Treatment probability may be expanded 
by conditioning on relevant events: 
P T = P (E | E e,µ

)
P e,µ + P (E | E e,µc )P e,µc + P (E | E e c ,µ)

P e c ,µ. (12) 
where the necessary conditioning probabilities are derived in the 
SI. We assume that radio- (or chemo-) ablative therapy adminis- 
tered at time of detection T D and prior to adjuvant immunotherapy 
reduces the population to a minimal residual level m mrd & M . 
4.1. CAR T-cell therapy 

Chimeric antigen receptor (CAR) T-cells are a class of ex-vivo 
engineered T-cells with artificial receptors and co-stimulatory sig- 
nals designed to target an epitope differentially expressed by can- 
cer cells ( Sadelain et al., 2017 ). Their use has been particularly ef- 
fective against hematological malignancies, wherein a variety of B- 
cell lymphomas demonstrate response to anti-CD-19 CAR T-cells 
( Brudno and Kochenderfer, 2018 ). Importantly, the CAR T-cell re- 
ceptor is not limited to MHC-I recognition and can identify a va- 
riety of preferentially expressed tumor cell signatures, including 
surface proteins and carbohydrates ( Yu et al., 2017 ). Thus, CAR T- 
cell therapy is effective in settings such as acute lymphoblastic 
leukemia, where mutation burden is low ( Martin et al., 2016; Wang 
and Rivière, 2016 ). Its success in solid malignancies requires selec- 
tion of preferentially over-expressed tumor-specific epitopes in the 
bulk tumor ( Brown and Adusumilli, 2016; Newick et al., 2016 ). 

Our analysis considers the case where a CAR T-cell clone has 
been engineered with recognition directed against a pre-identified 
tumor-specific epitope. We assume the CAR T-cell detection limit, 
m car , is sufficiently low so that m car ≤ m mrd (See SI for details). 
Deterministic detection therefore occurs immediately at size m mrd 
for some fixed dosage of CAR T-cells as a result of built-in co- 
stimulation that occurs automatically with receptor binding. We 
allow for the arrival of CAR epitope-evasive cells at rate µcar fol- 
lowing treatment, and neglect the event that an epitope-evasive 
clone is present prior to treatment. Since CAR T-cells target all can- 
cer cells at detection, successful treatment proceeds identically re- 
gardless of how the cancer population arrived at detection (escape 
vs evasion). Therefore, the conditional probabilities of Eq. (12) re- 
duce to deterministic recognition with detection limit at starting 
size m mrd , and may be written as a generalized version of Eq. (11) . 

Analytical estimates of CAR T-cell P E are plotted over all growth 
ranges for a variety of immune states in Fig. 6 . µcar ∼ 10 −4 was 
chosen large to best illustrate CAR T-cell efficacy vs growth rate. 
In reality, µcar could be significantly less than µ depending on the 
CAR T-cell target, so that Fig. 6 underestimates CAR T-cell bene- 
fit. Intuitively, CAR T-cell therapy is predicted to impart substan- 
tial treatment benefit independent of immune functioning because 
CAR T-cell cancer elimination does not rely upon the host immune 
system. Detection at m mrd is effectively size-limited, and so this 
therapy is also less effective against threats with larger net growth 
rates. 
4.2. Autologous neoantigen vaccines 

Autologous neoantigen vaccines are another type of im- 
munotherapy which relies on the delivery of tumor antigens to 
the cell in order to augment or enhance the effect of neoantigen- 
specific CD8 + T-cells ( Fritsch et al., 2014 ). Contrasting their re- 
duced efficacy in tumors with lower mutation rates ( Martin et al., 
2016 ), neoantigen vaccines have been effective against highly mu- 
tagenic tumors, such as melanoma, where the neoantigen burden 
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Fig. 6. Predicted disease elimination probability ( P l + P E ). CAR T-cell (green) and 
neoantigen vaccine (red) therapy benefits are compared to non-treatment survival 
predictions (black) as a function of relative net growth rate r / d for various values of 
immune turnover (rows bottom-to-top: k = { 10 −1 , 10 −2 , 10 −3 } ) and repertoire di- 
versity (columns left-to-right: p b = {0.5, 0.75, 1.0}) ( d = 0 . 20 , µ = 10 −6 , R = 10 4 , 
M = 10 6 , m mrd = 10 3 , R = 0 for neoantigen vaccine case, µcar = 10 −4 ). 
is significant ( Hellmann and Snyder, 2017; Ott et al., 2017; Sahin 
et al., 2017 ). In our framework, successful immune priming occurs 
if sufficient levels of vaccine-delivered antigen suddenly become 
available for activating T-cells, effectively reducing the detection 
threshold R . For simplicity we assume that a sufficient level of tu- 
mor antigens are present so that R = 0 and any residual cancer size 
can be targeted. 

Unlike CAR T-cell treatment, vaccine therapy is only success- 
ful when there is an absence of immune evasive cells both prior 
to and following treatment (i.e. on E µc ), since type-2 cells can 
still evade vaccine-sensitized host T-cells. The only conditional 
probability in Eq. (12) that contributes to treatment success is 
P (E| E e,µc ), which is none other than P l in the adaptive model with 
detection and initial population size both equal to m mrd (see SI). 
The final required quantity is the factor P e,µc calculated as follows: 
P e,µc = P (E µc | E e )P e = (1 − µ) M · P e (M; m 0 ). (13) 

Vaccine treatment efficacy is plotted alongside CAR T-cell ther- 
apy in Fig. 6 . There is minimal predicted treatment benefit in im- 
munocompromized patients, consistent with the fact that vaccine 
strategies are reliant upon proper immune recognition. The treat- 
ment benefit appears to be maximal for patients with preserved 
repertoire diversity and low T-cell turnover, presumably the result 
of allowing more time to pass, and hence immune turnover to oc- 
cur, at low population sizes. Elimination of slow-growth threats 
that would normally progress via sneak-through is increased, since 
there is no post-treatment detection limit. 
5. Discussion 

Our findings support the importance of the growth-threshold 
conjecture as an essential aspect of empirical recognition dynam- 
ics, since size-limited detection predicts an exclusive preference 
for fast-growing threats. In addition to static growth and recog- 
nition, sneak-through is predicted by a new mechanism that in- 

volves preferential acquisition of immune evasion for slow and 
large growth rates. 

Application of this relatively simple model to AML provides a 
quantification of the trade-off between T-cell turnover and reper- 
toire size and control of malignancy. Moreover,the assumption that 
incidence carries equal risk through time places no mechanistic re- 
strictions on the molecular generation of tumor development, and 
stands as a prediction of tumor generation largely orthogonal to 
the canonical multi-hit hypothesis ( Armitage and Doll, 1954 ). We 
find not only that this model agrees more closely with the data 
when compared to the best-fit multi-hit predictions, but that the 
immune incidence curve also accurately reproduces the sigmoid 
shape of AML incidence in a way that is impossible for the con- 
vex multi-hit model. It is also interesting that gender-specific dif- 
ferences in thymic output (favoring females) also correlate with a 
systematic reduction in AML incidence ( Pido-Lopez et al., 2001 ). 
From a clinical standpoint, the prediction of maximizing immune 
health in order to mitigate incidence is broadly quantified for tu- 
mors that may adopt immune evasion strategies, as well as more 
general immune threats. In the case of treatment-refractory AML 
with subsequent hematopoietic stem cell transplant, our results 
would suggest that particular emphasis should be placed on main- 
taining repertoire diversity and, where possible, thymic turnover 
( Holländer et al., 2010 ). 

In an attempt to provide an initial and straightforward pre- 
sentation, we assumed pure birth in the recognition and death 
phase. Future analysis using the more complicated birth-death pro- 
cess would likely increase the rate of immune evasion genera- 
tion during immune killing. We have also assumed that immune 
killing occurs quickly and to a sufficient level for all threat sizes 
and that the threat net growth rate is fixed. We believe that this 
is a reasonable assumption for studying a rapidly growing threat 
such as AML, where reduced growth occurs only in advanced dis- 
ease ( Akinduro et al., 2018 ). Other dynamic threats including many 
solid tumors, which are characterized by complicated, time-varying 
growth rates, are analytically intractable in this framework and ne- 
cessitate a more extensive reliance on numerical simulation. In 
general, for sigmoid growth, the above results assuming mean 
exponential growth provide an upper-estimate on tumor escape, 
while evasion under growth-limited detection inherently depends 
on the functional form of the growth rate. Though an approxima- 
tion, we believe these dynamics are reasonable as a naïve T-cell 
clone expands rapidly, though not instantaneously, to become a 
dominant clone during proper immune activation ( Desponds et al., 
2016 ). 

We selected AML as a model disease for initial assessment of 
our model owing to several applicable features. Its rapid growth 
is well-approximated by a growth rate homogeneous in time and 
size. Unlike their solid counterparts, the immune cells have no dif- 
ficulty interfacing with hematological cancer cells. Lastly, AML’s 
characteristically low mutational burden enables us to estimate 
immune evasion in the simplified framework above without the 
risk of ignoring possibly many intermediate phenotypes with mild 
evasion potential. It is likely however that the tumor-immune co- 
evolution described here applies broadly to many cancer types, and 
therefore warrants careful consideration of other relevant factors, 
such as mutational burden and immune infiltration, in future anal- 
yses ( Blank et al., 2016 ). 

The advantage of antigen vaccine strategies studied here re- 
sulted from augmented immune priming of the T-cell repertoire, 
thereby allowing recognition to overcome detection limits. Varia- 
tions due to cancer subtype, including antigenicity and (for solid 
tumors) T-cell infiltration, may substantially affect immune prim- 
ing, and hence vaccine efficacy, but are not considered here. In par- 
ticular, the subclonal neoantigen landscape is an important consid- 
eration that warrants further analysis for a more complete under- 
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standing. Future studies will further distinguish between clones of 
differing fitnesses dependent upon their antigenicity and interme- 
diate levels of immune evasion in an attempt to better characterize 
the co-evolution between a dynamic tumor and adaptive immune 
compartment. 
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S1 Overview

Here, we provide additional details and analysis of the models considered in the main text; growth-limited
vs. size-limited detection modes, deterministic vs. stochastic (adaptive) recognition, and static vs. dynamic
(immune evading) threats. We begin in Section S2 by describing minimal detection sizes as well as mean
detection and elimination times. In Section S3 we specify the recognition and evasion probabilities for an
adaptive threat. Section S4 details the general results for static threat escape probabilities and optimal
growth strategies for static threats under growth-limited vs. size-limited detection as well as deterministic
vs. stochastic recognition. This analysis is repeated for dynamical threats in Section S5, adding estimates of
immune evasion probabilities and mean evasion arrival times. In section S6 we elaborate on the constitutive
assumptions used to characterize turnover rate and immune repertoire diversity as functions of time in the
calculation of age-dependent AML incidence, and Section S7 concludes with a quantitative framework for
predicting successful immunotherapy treatment.
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S2 Mean detection and elimination times

We assume throughout that population dynamics follow transition equations given by Eqs. 1-2 in the main
text. Let X1(t) denote the population size of sensitive invading cells, r the per-cell net growth rate, M ! 1
the terminal size, m the size at which the population is recognized, and m0 the minimal population size at
which immune recognition may first occur. Under the growth-threshold conjecture, immune recognition may
only begin once rX1(t) ≥ R, for a lower limit of detection R of the total invading threat net growth rate.
Thus,

m0(r) = #R/r$. (S1)

In order to avoid confusion, we will denote the detection size in the size-limited case as

m0 = mc. (S2)

In the deterministic case, recognition occurs with certainty once X1 = m = m0. In the stochastic case,
recognition and subsequent killing may (or may not) occur at any size X1 = m for m0 ≤ m ≤ M .

Let S1 be the time at which X1 becomes recognized, and S̃1 the time at which X1 reaches extinction
conditioned on initial recognition at size m. Let Ti be the time that the population grows to size i during the
growth phase, and T̃i the time that the population dies to size i during the death phase, with corresponding
mean times ti and t̃i, respectively. Then X1(t) = i on time intervals [Ti, Ti+1), and [T̃i, T̃i−1) with T1 = 0
and T̃m = Tm. Similarly, let ∆Ti = Ti+1 − Ti (resp. ∆T̃i = T̃i−1 − T̃i) denote the exponentially-distributed
inter-arrival time at population size X1 = i during growth (resp. immune killing) with mean time ∆ti
(resp. ∆t̃i). Then, for hi ≡

∑i
j=1 1/j and m ! 1, we have that ti = hi−1/r, and the mean detection and

elimination times are given by

E[S1] =
m−1∑

i=1

E[∆Ti] =
m−1∑

i=1

∆ti =
hm−1

r
≈ logm

r
, (S3)

and

E[S̃1] = E[S1] +
m∑

i=1

∆t̃i =
hm−1

r
+

hm

r̃
≈ d logm

r(d− r)
. (S4)

Where appropriate, mean inter-arrival times will be used as approximations to simplify calculations. The
effects of varying net growth rate on mean population dynamics are given in Fig. S1. Small differences in
growth rates for rapidly growing threats primarily affect the time spent in the death phase and result in
minimal differences in detection sizes. This is in contrast to slow-growth threats, which all become quickly
eliminated by a robust immune response, but are recognized at a variety of different sizes. In the extreme
cases (not pictured), threats outgrow the immune system death rate, or grow so slowly that they escape
detection altogether.
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Figure S1: Population dynamics for a static threat under growth-limited, deterministic detection. Mean
population dynamics for various large (dashed) and small (solid) net growth rates r (d = 0.20, R = 104,M =
107, each trajectory averaged n = 10 times).

S3 Immune recognition

We model immune recognition of a growing threat with two parameters. The first parameter represents
a measure of immune repertoire diversity in the form of a background escape probability, pb, so that im-
munocompetent systems with high repertoire diversity have low escape probabilities. pb characterizes the
likelihood of response from a fixed immune repertoire or innate immune system when the threat first be-
comes detectable. Therefore, X1 is recognized by the immune system at size m0 with probability 1 − pb.
The second parameter k represents the turnover rate of the adaptive immune compartment so that under
adaptive recognition, threats may escape at size m0, but eventually become detected for some size m > m0.

S3.1 Deterministic recognition

Under deterministic recognition, k = 0 and pb = 0 so that threats are recognized at size m = m0. This
provides a convenient starting point for the slightly more general setting of adaptive recognition.

S3.2 Adaptive recognition

In this case, the escape probability pb > 0 represents the likelihood that a threat escapes the current immune
repertoire immediately following the population’s arrival to detectable size. Recognition therefore occurs at
this moment with probability 1 − pb and, should this occur, we have that m = m0. Immune recognition
due to turnover of the adaptive T-cell repertoire may also occur for m0 ≤ m ≤ M . Adaptive recognition
is modeled by the random arrival of recognizing T-cells at Poisson rate k(t) for X1 ∈ {m0, . . . ,M}. The
probability Pa(m;m0) that a threat escapes adaptive immune turnover to size m from initial detection size
m0 is given by

Pa(m;m0) = exp

(
−
∫ Tm

Tm0

k(τ)dτ

)
. (S5)

For homogeneous T-cell turnover over time interval ∆T ≡ Tm − Tm0 , this simplifies to

Pa(m;m0) = e−k∆T . (S6)
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The mean acquired escape probability can be calculated by noting that the inter-arrival times ∆Tj are
independent exponential random variables as follows:

pa(m;m0) ≡ E[Pa(m;m0)] = E
[
exp

{
− k

m−1∑

i=m0

∆Ti

}]
=

m−1∏

j=m0

E
[
e−k∆Ti

]
=

m∏

j=m0

E
[
e−Yi

]
(S7)

for m > m0 and Yi ∼ Exp(ri/k). The Moment-generating function, MYi(t), of Yi is given by

MYi(t) ≡ E
[
etYi

]
=

1

1− (kt/ri)
, for t < ri/k. (S8)

It follows by evaluating each MYi at t = −1 that

pa(m;m0) =
m∏

i=m0

ri

ri+ k
. (S9)

When convenient, we apply the deterministic approximation by use of ∆t ≡ E[∆T ] as a lower-bound on
the escape probability through Jensen’s inequality:

pa(m;m0) ≥ e−k∆t ≈
(
m0 − 1

m− 1

)k/r

≈
(
m0/m

)k/r
. (S10)

This estimate is sufficiently accurate under reasonable modeling assumptions with maximum error given by

||pa(m, r)− e−k∆t||∞ < 0.017 (S11)

over a parameter range that covers all of the values used in the analysis to follow (m ranging from 102 to 107

for all combinations of m0 = {102, 103, 104} and k = {10−1, 10−2, 10−3}). We proceed by using this estimate
to characterize pa subsequently and throughout the main text. From this, we may approximate the total
probability pe(m;m0) that a threat escapes recognition from X1(tm0) = m0 to X1(tm) = m by

pe(m;m0) =

{
1, m < m0;

pb
(
m0
m

)k/r
, m0 ≤ m ≤ M.

(S12)

We may also express via Eqs. S3-S12 the probability pr(m;m0) that immune recognition first occurs
while X1 = m. Note that if m = m0, then

pr(m0;m0) =
(
1− pb

)
+ pb

[
1− pa(m0 + 1;m0)

]
, (S13)

and for m > m0

pr(m;m0) = pbpa(m;m0)
[
1− pa(m+ 1;m)

]
. (S14)

Together, we approximate pr by

pr(m;m0) =






0, m < m0;

1− pbe
− k

rm0 , m = m0;

pb
(
1− e−

k
rm

)(
m0
m

)k/r
, m0 < m ≤ M.

(S15)

Of course, pe = 1 and pr = 0 if m0 ≥ M , which only occurs trivially under size-limited detection if
mc < M but may occur during growth-limited detection for r sufficiently small. The cumulative recognition
probability 1 − pe along with pe and pr will be applied to the subsequent sections on adaptive immune
response.
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S4 Static threats

In this section, an initial population of cells may undergo net growth to detection but do so without acquiring
an immune evasive subpopulation. We wish to describe conditions under which non-evasive (static) immune
threats may succeed in immune system evasion. In this case, a threat either escapes to detection size, denoted
by event Ee with corresponding probability Pe, or is recognized and eliminated (denoted by Ec

e) , so that

P(Ee) = Pe; P(Ec
e) = 1− Pe. (S16)

S4.1 Growth strategies for static threats

Here we discuss growth strategies that result in static threat escape for growth-limited vs. size-limited
detection assumptions under deterministic recognition followed by a similar analysis for adaptive recognition.

S4.1.1 Deterministic recognition

Deterministic recognition is a special case of Eq. S15 with pb = 0, giving recognition probability unit mass
at detection threshold so that

pr(m;m0) =

{
0, m += m0;
1, m = m0.

(S17)

Size-limited detection: If the immune system mounts a predictable response at size m0 ≤ M , then there
is no preferred growth strategy under the size-threshold assumption aside from the case when r > d, since
every threat is identified and eliminated at fixed size mc ≤ M . In this case,

Pe =

{
1, r > d;
0, r ≤ d.

(S18)

Growth-limited detection: Under the growth-threshold assumption, slow-growth threats may ‘sneak
through’ if r < R/M . Threats growing faster than R/M but not exceeding the immune killing rate are
eliminated. In this case,

Pe =






1, r > d;
0, R/M < r ≤ d;
1, r ≤ R/M.

(S19)

The per-cell killing rate of a robust immune response is assumed to be much larger than the growth rate of
most threats, and so when studying a population of dividing cancer cells, we generally restrict our attention
to cases when r < d.

S4.1.2 Adaptive immune recognition

Evasion of the adaptive immune system occurs if the growing threat remains undetected for all sizes m ∈
{m0, . . . ,M}. This in turn is related to the mean sojourn time of X1 in [m0,M ], given by

∆ts(r) ≈ log
(
M/m0

)
r−1. (S20)

By Eqs. S10, S12 we have that maximizing escape probability amounts to minimizing Eq. S20.
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Figure S2: Cumulative recognition probabilities under adaptive, size-limited detection. The cumulative
recognition probability, 1 − pe(m;mc), is given as a function of current population size (x-axis m) and net
growth rate (y-axis r). This relation is plotted for varied escape probabilities across columns (left-to-right)
pb = {0.5, 0.75, 1.0} and repertoire turnover rates across rows (bottom-to-top) k ∈ {10−1, 10−2, 10−3}. In all
cases, detection size mc = 103, and faster growing threats have lower chances of detection than their slower
growing counterparts.

Size-limited detection: Under the size-threshold assumption Eq. S20 becomes

∆ts(r) ≈ log
(
M/mc

)
r−1, (S21)

a decreasing function on r ∈ (0,∞). This therefore suggests that evasive populations which evolve over time
to maximize their net growth rate have the best chance of avoiding elimination. The escape probability may
be approximated via Eq. S12 with m0 = mc and m = M , given by

Pe = pb
(mc

M

)k/r
. (S22)

Growth-limited detection: Under the growth-threshold assumption, Eq. S20 becomes

∆ts(r) ≈ log

(
rM

R

)
r−1. (S23)

Eq. S23 is continuous in r, increasing on
[
R/M, eR/M

)
and decreasing on

(
eR/M,∞

)
with ∆ts

(
R/M

)
= 0.

This supports the existence of a slow-growth window r ∈
(
R/M, eR/M

)
on which immune threats locally

prefer decreased growth rates to obtain larger escape probabilities until an extreme value r = R/M is
achieved. Immune threats are predicted to grow free of immune detection below this threshold. The escape
probability is given via Eq. S12 with m0 = #R/r$. The cumulative recognition probability 1− pe(m;m0) is
plotted as a function of m and r for various immune parameter values k and pb under the growth-threshold
assumption in Fig. 2 (the size-threshold analog is given by Fig. S2). A majority of recognition events occur
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Recognition Mode Detection Optimal growth strategy
Deterministic (fixed) Size-limited r > d only
Deterministic (fixed) Growth-limited r > d; r < R/M
Stochastic (adaptive) Size-limited r > d; r → d
Stochastic (adaptive) Growth-limited r > d; r → R/M if r < eR/M ; r → d if r > eR/M

Table S1: Static immune evasion strategies under various detection assumptions.

near m = m0 when T-cell turnover rate is high and escape probability is low. Reductions in turnover k with
preserved repertoire diversity (low pb) therefore minimally affect immediate protection afforded to the host
at the lower detection limit. Further immune compromise via increased pb results in substantial impairment
in immune recognition. Escape probability is approximated via Eq. S12 by

Pe = pb

(
R

rM

)k/r

. (S24)

S4.2 Static threat summary

In all cases, one non-extinction strategy is extreme growth beyond the ability of immune elimination (r > d),
which should be unrealistic for most invading threats. For deterministic recognition under size-limited de-
tection, there is no alternative. Under deterministic, growth-limited detection there is a slow-growth window
that permits immune escape. Such a situation applies to the innate immune system (Toll-like receptor and
NK cell activation, for example) and supports the success of lysogenic viral infections or slow-growing, persis-
tent intracellular bacteria [1,2]. Under adaptive recognition, size-limited detection again favors threats with
faster growth only, while growth-limited detection allows fast- or slow-growing threats to succeed. From a
design perspective, growth-limited detection is an attractive system for targeting a rapidly growing pathogen,
while sparing antigens that are expressed abundantly but not undergoing dramatic changes in their levels.
These findings are summarized in Table S1.
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S5 Dynamic threats

In this section, a dividing collection of initially detectable cells is capable of producing an immune evasive
(type-2) subpopulation. As before, we characterize relevant growth strategies under the various assumptions
outlined in the prior section. Here however, acquired immune evasion contributes to the survival strategy
in addition to undetected escape to large sizes. A single immune evader must be produced prior to the
elimination of type-1 cells in order for it to perpetuate the population. We therefore study the probability
and mean arrival time of this first evader under the modeling assumptions listed previously.

In this case, a growing population may be sustained either by avoiding the immune system or by acquiring
an immune evasive phenotype prior to extinction, which is assumed to occur at a per-cell rate of µ . 1
per cell-division. Toward this end, we denote Ee to be the event that the dividing population escapes
immune detection on {m0, . . . ,M} and exceeds lethal size M . Similarly, we let Eµ denote the event that the
threat successfully acquires an immune evader. Then all outcomes may be classified into one of four disjoint
categories: 1. Ee,µc ≡ Ee ∩ Ec

µ: Threat escape without type-2 population acquisition; 2. Ee,µ ≡ Ee ∩ Eµ:
Type-1 escape with type-2 population acquisition prior to detection; 3. Eec,µ ≡ Ec

e ∩Eµ: Type-1 recognition
with type-2 acquisition prior to type-1 population extinction, and; 4. Eec,µc ≡ Ec

e ∩Ec
µ: Type-1 recognition

without type-2 acquisition prior to type-1 population extinction. A dynamic threat is said to win if either
Ee or Eec,µ occurs. A dynamic threat is said to lose if Eec,µc occurs. For notational convenience, we denote
the probability of each of these events as follows:

Pe = P(Ee); Pec,µ = P(Eec,µ); Pl = P(Eec,µc). (S25)

S5.1 Immune evasion arrival probability

We let τ2 denote the time of type-2 population arrival and recall from Sec. S2 that S1 (resp. S̃1) is the time
of type-1 detection (resp. extinction). Each immune threat starting at X1(0) = 1 provides an opportunity
for acquired immune evasion prior to threat recognition and subsequent elimination. The type-2 generation
probability conditioned on immune recognition occurring at size X1 = m, denoted by Pec,µ(m), is derived
below. We will calculate this quantity by conditioning on the inter-arrival times ∆Ti = Ti+1 − Ti. It follows
from the above dynamics that ∆Ti ∼ Exp

(
ri− µri

)
.

Define Ni to be the number of (Poisson) arrivals of X2 immune evaders on interval ∆Ti prior to immune
recognition. Then Ni’s distribution may be described by P

(
Ni = n

)
= (µri∆Ti)ne−µri∆Ti/n!. Analogously,

∆T̃i=T̃i−1 − T̃i, with ∆T̃i ∼ Exp
(
r̃i+ µri

)
, with Ñi number of arrivals of X2 evaders on ∆T̃i having distri-

bution given by P
(
Ñi = n

)
= (µri∆T̃i)ne−µri∆T̃i/n!.

Under net birth starting at size X1 = 1 and up to X1 = m there are on average µ evaders produced per
cell division, so we may estimate that there are m − 1 independent opportunities for X2 generation, each
with probability µ. Therefore, the probability that X2 is acquired at least once on this birth trajectory is:

P
(
τ2 < S1

∣∣ X1(S1) = m
)
= 1− (1− µ)m−1. (S26)

We remark that type-2 cell arrival prior to type-1 population recognition is rate-independent under the
size-limited case (mc), but not under growth-limited detection. We obtain P

(
S1 ≤ τ2 < S̃1

)
below by

conditioning on the exponentially distributed inter-arrival times:
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P
(
S1 ≤ τ2 < S̃1

∣∣ X1(S1) = m
)
=

m−1∑

i=1

P
(
T̃i ≤ τ2 < T̃i−1

)

= (1− µ)m−1
m∑

i=1

m∏

j=i+1

∫ ∞

0
e−µrjt̃j (r̃j + µrj)e−(r̃j+µrj)t̃jdt̃j

·
∫ ∞

0

(
1− e−µrit̃i

)
(r̃i+ µri)e−(r̃i+µri)t̃idt̃i

= (1− µ)m−1
m∑

i=1

(
m∏

j=i+1

∫ ∞

0
(r̃ + µr)je−(r̃+2µr)jt̃jdt̃j

)

·
∫ ∞

0
(r̃ + µr)i

[
e−(r̃+µr)it̃i − e−(r̃+2µr)it̃i

]
dt̃i

= (1− µ)m−1
m∑

i=1

(
1− r̃ + µr

r̃ + 2µr

) m∏

j=i+1

(
r̃ + µr

r̃ + 2µr

)

= (1− µ)m−1

(
µr

r̃ + 2µr

) m∑

i=1

(
r̃ + µr

r̃ + 2µr

)m−i

= (1− µ)m−1

(
µr

r̃ + 2µr

)(
r̃ + µr

r̃ + 2µr

)m m∑

i=1

(
r̃ + 2µr

r̃ + µr

)i

= (1− µ)m−1

(
µr

r̃ + 2µr

)(
r̃ + µr

r̃ + 2µr

)m( r̃ + 2µr

r̃ + µr

)

·
(
(r̃ + µr)m − (r̃ + 2µr)m

(r̃ + µr)m

)(
(r̃ + µr)

−µr

)

= (1− µ)m−1 (r̃ + 2µr)m − (r̃ + µr)m(
r̃ + 2µr

)m . (S27)

We have used the notational convention that
∏0

j=1 f(j) = 1 above. Thus, for r̃ > r, we have that the type-2
generation probability conditioned on recognition at size X1 = m, denoted by Pec,µ(m), is given by

Pec,µ(m) ≡ P
(
τ2 < S̃1

∣∣ X1(S1) = m
)

= P
(
τ2 < S1

∣∣ X1(S1) = m
)
+ P

(
S1 ≤ τ2 < S̃1

∣∣ X1(S1) = m
)

= 1− (1− µ)m−1

[
1− (r̃ + 2µr)m − (r̃ + µr)m(

r̃ + 2µr
)m

]

= 1− (1− µ)m−1
( r̃ + µr

r̃ + 2µr

)m

= 1− (1− µ)m−1

(
d− (1− µ)r

d− (1− 2µ)r

)m

. (S28)

S5.2 Mean arrival time of first immune evader

Even under the simpler, deterministic recognition assumption, type-2 arrival may not occur before extinction.
We estimate Tµ, the expected first arrival time of type-2 cells conditioned on their arrival occurring prior
to type-1 elimination, or, equivalently, on the event that τ2 < S̃1. Members of X2 arrive according to a
non-homogeneous Poisson process with intensity given by λ(t) = µri on t ∈ [Ti, Ti+1) ∪ [T̃i, T̃i−1). We wish
to provide a mean estimate of τ2 conditioned on the arrival of X2 prior to extinction of population X1

9



(otherwise τ2 = ∞). We will use mean values of birth (resp. death) arrival times, ti (resp. t̃i). The quantity
of interest may be written as

Tµ(m) ≡ E
[
τ2
∣∣ τ2 < S̃1

]
. (S29)

Let IF be the indicator function of event F . That is,

IF =

{
1 on F,

0 on F c.
(S30)

Let E = [τ2 < S̃1] denote the event that τ2 < S̃1. Similarly, let Ei = [ti ≤ τ2 < ti+1] and Ẽi = [t̃i ≤ τ2 <
t̃i−1] denote the events that time τ2 occurs on interval [ti, ti+1) and [t̃i, t̃i−1), respectively. Then E is the
disjoint union of {Ei}i and {Ẽi}i. Therefore, by the definition of conditional expectation,

Tµ(m) =
E[τ2IE ]

P
(
τ2 < S̃1

) =

(m−1∑

i=1

E
[
τ2IEi

]
+

m∑

i=1

E
[
τ2IẼi

])/
Pec,µ(m), (S31)

since Pec,µ(m) > 0 (Equation S28). We will use Equation S31 to characterize mean immune evader arrival
time. The arrival of type-2 cells during type-1 birth is an non-homogeneous Poisson process during mean
time interval [0, tm), with intensity

λ(t) = µri for t ∈ Ei (S32)

and mean value function given by

mλ(t) ≡
∫ t

0
λ(τ)dτ. (S33)

The time of first arrival has probability density

f(t) = λ(t)e−mλ(t). (S34)

Mean arrival times may be expressed as the sum of prior mean inter-arrivals:

ti+1 =
i∑

j=1

∆tj =
i∑

j=1

1

(1− µ)rj
≈ hi/r, for µ . 1, (S35)

where hi =
∑i

j=1 1/j is the harmonic series. Thus, for t ∈ [ti, ti+1),

mλ(t) =

∫ ti

0
λ(τ)dτ +

∫ t

ti

λ(τ)dτ

=
i−1∑

j=1

µrj(tj+1 − tj) +

∫ t

ti

µridτ

≈
i−1∑

j=1

µrj
(
hj − hj−1

)
/r + µrit− µriti

=
i−1∑

j=1

µ+ µrit− µihi−1

= µ
(
i− 1− ihi−1

)
+ µrit. (S36)
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Therefore,

f(t) ≈ µrie−µ(i−1−ihi−1)e−µrit. (S37)

Thus we may write

E[τ2IEi ] =

∫ ti+1

ti

tf(t)dt

≈ e−µ(i−1−ihi−1)

∫ ti+1

ti

tµrie−µritdt

= e−µ(i−1−ihi−1)
([

− te−µrit
]ti+1

t=ti
+

∫ ti+1

ti

e−µritdt
)

= e−µ(i−1−ihi−1)

{(
ti +

1

µri

)
e−µriti −

(
ti+1 +

1

µri

)
e−µriti+1

}

≈ e−µ(i−1−ihi−1)

{(hi−1

r
+

1

µri

)
e−µihi−1 −

(hi

r
+

1

µri

)
e−µihi

}

=
(hi−1

r
+

1

µri

)
e−µ(i−1) −

(hi

r
+

1

µri

)
e−µi

=
1

r

[
hi−1e

−µ(i−1) − hie
−µi +

1

µi

(
e−µ(i−1) − e−µi

)]
. (S38)

Summing over Ei, we have,

m−1∑

i=1

E[τ2IEi ] =
1

r

(
m−1∑

i=1

(
hi−1e

−µ(i−1) − hie
−µi
)
+

m−1∑

i=1

1

µi

(
e−µ(i−1) − e−µi

)
)

=
1

r

(
− e−µ(m−1)

m−1∑

i=1

1

i
+

m−1∑

i=1

1

µi

(
e−µ(i−1) − e−µi

)
)

=
1

r

m−1∑

i=1

1

i

[
1

µ

(
e−µ(i−1) − e−µi

)
− e−µ(m−1)

]
(S39)

Expanding 1
µ

(
e−µ(i−1) − e−µi

)
− e−µ(m−1) at µ = 0 and approximating by the linear term in µ yields

≈ 1

r

m−1∑

i=1

1

i
(m− i+ 1/2)µ

=
µ

r

[
(m+ 1/2)hm−1 − (m− 1)

]

≈ m

r

(
logm− 1

)
µ. (S40)

We note that m

r

(
hm−1 − 1

)
µ < hm−1/r = E[T1], for µm < 1,

the above inequality holding whenever µm < 1.

We may provide an estimate for E[τ2IẼ ] by similar approach. Recall that t̃i denotes the mean time that

the population decreases to size i, and ∆t̃i its respective mean inter-arrival time. Let h̃j =
∑m

k=j 1/k. Then

t̃m = tm and

s̃i = tm +
1

µr + r̃
h̃i+1 ≈ tm + h̃i+1/r̃ for µ . 1. (S41)
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Additionally, λ(t) = µri and f(t) = λ(t)e−mλ(t) on Ẽi = [t̃i, t̃i−1), with

mλ(t) =

∫ t

0
λ(τ)dτ

=

∫ tm−1

0
λ(τ)dτ +

∫ t̃i

t̃m

λ(τ)dτ +

∫ t

t̃i

λ(τ)dτ

=
m−1∑

j=1

µrj(tj+1 − tj) +
m∑

j=i

µrj(t̃j−1 − t̃j) +

∫ t

t̃i

µridτ

≈ µ
m−1∑

j=1

j
(
hj − hj−1

)
+

µr

r̃

m∑

j=i

j
(
h̃j − h̃j+1

)
+ µri(t− t̃i)

= µ(m− 1) +
µr

r̃
(m− i+ 1)− µrit̃i + µrit

≈ µ

r̃
m(r̃ − r)− µr

r̃
i− µrit̃i + µrit, for m ! 1

≡ Ci + µrit.

Therefore,

E
[
τ2IẼi

]
=

∫ t̃i−1

t̃i

tf(t)dt

≈
∫ t̃i−1

t̃i

µrite−Cie−µritdt

= e−Ci

[
t̃ie

−µrit̃i − t̃i−1e
−µrit̃i−1 +

1

µri
(e−µrit̃i − e−µrit̃i−1)

]

≈ e−
µ
r̃ m(r̃−r)+µr

r̃ i+µrit̃i
[
e−µrit̃i

(
t̃i − t̃i−1e

−µr
r̃ +

1

µri

(
1− e−

µr
r̃
))]

= e−
µ
r̃ m(r̃−r)e

µr
r̃ i
[
t̃i − t̃i−1e

−µr
r̃ +

1

µri

(
1− e−

µr
r̃
)]
. (S42)

Summing over Ẽi, we have,

E[τ2IẼ ] =
m∑

i=1

E[τ2IẼi
]

≈ e−
µ
r̃ m(r̃−r)

m∑

i=1

(
t̃ie

µr
r̃ i − t̃i−1e

µr
r̃ (i−1) +

1− e−
µr
r̃

µri
e

µr
r̃ i

)

= e−
µ
r̃ m(r̃−r)

(
t̃me

µrm
r̃ − t̃0 +

m∑

i=1

e
µr
r̃ i − e

µr
r̃ (i−1)

µri

)

= e−
µ
r̃ m(r̃−r)

(
hm−1

r
e

µrm
r̃ − hm−1

r
− h̃1

r̃
+

m∑

i=1

e
µr
r̃ i − e

µr
r̃ (i−1)

µri

)

= e−
µ
r̃ m(r̃−r)

(
hm−1

r

(
e

µrm
r̃ − 1

)
− hm

r̃
+

1

r̃

m∑

i=1

1

i

e
µr
r̃ i − e

µr
r̃ (i−1)

µr/r̃

)

= e−
µ
r̃ m(r̃−r)

[
hm−1

r

(
e

µrm
r̃ − 1

)
+

1

r̃

m∑

i=1

1

i

(
e

µr
r̃ i − e

µr
r̃ (i−1)

µr/r̃
− 1

)]
.
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Taking the Taylor expansions of e−
µ
r̃ m(r̃−r)

(
e

µrm
r̃ − 1

)
and e−

µ
r̃ m(r̃−r)

(
e
µr
r̃

i−e
µr
r̃

(i−1)

µr/r̃ − 1
)
, we obtain to first

order in µ,

E[τ2IẼ ] ≈
1

r
hm−1

mr

r̃
µ+

1

r̃

(r
r̃

)(
m− hm

2

)
µ

≈
(r
r̃

)(m
r
logm+

m

r̃
− 1

2r̃
logm

)
µ

=
( r

d− r

)(m
r
logm+

m

d− r
− 1

2(d− r)
logm

)
µ. (S43)

Thus,

E[τ2IE ] ≈
[m
r

(
logm− 1

)
+
( r

d− r

)(m
r
logm+

m

d− r
− 1

2(d− r)
logm

)]
µ, (S44)

and so

Tµ(m) ≈ µ
[m
r

(
logm− 1

)
+
( r

d− r

)(m
r
logm+

m

d− r
− 1

2(d− r)
logm

)]/
Pec,µ(m) (S45)

follows by applying Eqs. S28 and S44 to Eq. S31. Agreement between simulations and our analytic theory
can be seen in Fig. S3 (see more detail below). From this, we find that the acquisition of immune evaders for
extreme values of r are more likely and, on average, arrive after a larger amount of time. For intermediate
growth rates where evader generation is rare (Eq. S28), type-2 arrivals, if they occur, must necessarily appear
quickly. Moreover, the output for reasonable parameter choice suggests that in contrast to evader generation
probability, mean evader arrival time may be less helpful for differentiating between growth-limited vs.
size-limited recognition modes (Fig. 3).

S5.3 Growth strategies for dynamic threats

As in the static case, a dynamic threat succeeds if it successfully avoids detection and grows past size M .
Dynamic threats also have the ability to succeed if they can create an immune evader prior to elimination.
Successful growth beyond M follows exactly the same behavior as in the static case since the presence or
absence of type-2 cells does not affect the outcome.

S5.3.1 Deterministic recognition

Since immune detection occurs with certainty, we have that

Pec,µ = Pec,µ(m0); (S46)

Pe = 0; (S47)

Pl = 1− Pec,µ(m0). (S48)

Thus threat escape depends solely upon the production of a type-2 cell prior to type-1 extinction, so it
suffices to only consider Pec,µ under deterministic recognition1.

Size-limited detection: Here, both Pec,µ and Tµ may be analyzed by substituting m = mc directly into
Eqs. S28 and S45. Agreement between theory and simulations is illustrated in Fig. S3A,B. From this, we
find that type-2 generation probability is an increasing function of net growth rate. Mean arrival time is
large for both small r and large r. The former case is due to a larger average time until first immune evader
arrival, while the latter occurs by virtue of the fact that a majority of evaders arrive during the long time
interval of net-death prior to elimination (Eq. S4). Together, this suggests that for size-limited detection,
immune evaders rarely occur for slow-growing threats and only do so on average over a long time period.

1Note that Pe = 0 implies that Ee is a P-null set, and so P(Eµ) = P(Eµ ∩ Ee) + P(Eµ ∩ Ec
e) = Pec,µ follows directly from

(Eµ ∩ Ee) ⊆ Ee.
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Figure S3: Simulations vs theory for evader arrival probabilities and mean arrival times. (A) Immune evader
arrival probability, Pec,µ, and (B) mean time of evader arrival, Tµ, for size-limited detection; (m0 = 103);
(C) Pec,µ and (D) Tµ for growth-limited detection; R = 100 (in all cases, d = 0.2, µ = 10−6, with averages
over 5 · 104 simulations).

Growth-limited detection: In a similar strategy as above, substitution of m0(r) = #R/r$ into Eqs.
S28 and S45 give analytical probability and mean evader arrival time. These results are plotted alongside
simulations in Fig. S3C,D. In contrast with the predictions for size-limited detection, type-2 generation
probability is maximal for large and small values of r relative to d. Moreover, the time scales of type-2
acquisition for both fast and slow growth threats are comparable. This is because threats with r approaching
d are recognized at small population sizes, but can maintain their size over a longer period of time due to
low net death rates. Conversely, r approaching 0 enables a population to reach larger sizes before being
recognized and quickly eliminated. One implication of this is that the risk of type-2 arrival will never be
entirely eliminated by enhancement of immune killing ability (via increased d) alone, and such an immune
modulation is predicted to have a weaker effect at controlling slow-growth threats that are more likely
to acquire an evasive phenotype prior to immune killing. This analysis characterizes immune recognition
behavior in the limit of small escape probability pe → 0 so that all threats are recognized once reaching
detection size, which is applicable to setting of memory immunity against a previously encountered threat.

S5.3.2 Adaptive immune recognition

This is the most involved, and arguably relevant, setting for studying the behavior of cancer-immune dy-
namics. Here, recognition may occur randomly for X = m ∈ {m0,m0 + 1, · · · ,M}. We may find Pec,µ in
this case by considering the probability Pec,µ(m) of immune evader arrival conditioned on detection at size
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Figure S4: Size-limited, dynamic threat escape, evasion, and loss probabilities. Dynamic threat escape,
evasion, and loss probabilities as a function of relative net growth rate r/d for various values of im-
mune turnover (rows bottom-to-top: k={10−1, 10−2, 10−3}) and repertoire diversity (columns left-to-right:
pb={0.5, 0.75, 1.0}) (d = 0.20, µ = 10−6, mc = 105, M = 106).

m via Eqs. S15, S28. The three probabilities of interest are given by:

Pec,µ = Pec,µ(m0 ≤ m ≤ M) = I[m0<M ]

M∑

m=m0

Pec,µ(m) · pr(m;m0), (S49)

Pe = pe(M ;m0) ≈ pb
(
m0/M

)k/r
, (S50)

Pl = Pl(m0 ≤ m ≤ M) = 1− (Pec,µ + Pe). (S51)

Size-limited detection: Relevant probabilities may be calculated using Eqs. S49-S51 with m0 = mc and
are depicted in Fig. S4. In this case, the probability of immune victory decreases for increasing growth rates
over a wide variety of immune turnover rates and repertoire diversity. This continues the theme of preferred
large growth threats seen in analysis of the static, size-limited case.

Growth-limited detection: As above, we can make use of Eqs. S49-S51 using m0 = m0(r), keeping in
mind that recognition only occurs for r such that m0(r) < M . Plots of the analytical probability estimates
are given for several selections of immune parameters pb and k in Fig. 4. It is evident in this case that a
variety of behaviors for the likelihood of escape and immune evasion depend on the relative choice of k and pb.
We observe that under high immune turnover and repertoire diversity (high k and low pb) immune detection
failure stems primarily from acquired immune evasion. As immune turnover rate and repertoire diversity is
compromised, immune escape dominates in the overall contribution to the probability of a dynamic threat
victory. In contrast to the size-limited case, dynamic threats under growth-limited detection enjoy increased
chances of victory for large and small growth rates, and, under a critical limit, threats can sneak-through
immune detection.
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S5.4 Dynamic threat summary

Dynamic threats are considered successful if they either escape immune detection, as in the case of a static
threat, or acquire a type-2 cell despite recognition prior to elimination. When recognition is deterministic,
the latter event is the only path to victory. When detection is size-limited, rapidly growing threats succeed
exclusively. Growth-limited detection allows both fast and slow growing threats to succeed via immune eva-
sion. Under adaptive immune recognition, the optimal strategy depends on immune turnover and background
recognition rates. In the growth-limited case, preferential success of slow and rapidly growing threats is seen
when there is minimal immune compromise. Threat victory under various reductions in immune turnover
and repertoire size depends on the nature of immune compromise. Dynamic threat optimal growth strategies
share some similarities with those of static threats, although the advantage of a slower growth rate is more
pronounced for a dynamic threat owing to its ability to acquire immune evaders prior to detection. These
strategies are summarized in Table S2.

Recognition Mode Detection Optimal growth strategy
Deterministic (fixed) Size-limited r > d; r large for maximal Pec,µ

Deterministic (fixed) Growth-limited r > d; r → d or r → R/M for maximal Pec,µ

Stochastic (adaptive) Size-limited r > d; r → d for maximal Pec,µ; Pe = Pe(pb, k)
Stochastic (adaptive) Growth-limited r > d; r → d or r → R/M for maximal Pec,µ; Pe = Pe(pb, k)

Table S2: Dynamic threat immune evasion strategies under various detection assumptions.
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S6 Predicted effects of decreased thymic output recognition

The analytic results of the prior section would suggest that cancer incidence, occurring either as a result of
acquired immune evasion or population escape, depends to a large degree on the state of the adaptive im-
mune compartment. Motivated by this, we apply our foundational model to make a simplified prediction of
cancer incidence as a function of an aging immune compartment. We select AML as a prototypical example,
due to its low mutational burden in addition to the fact that adequate T-cell infiltration and any additional
inhibitory effects of the tumor microenvironment are less of a concern in hematological malignancies. It is
known that thymic output decreases exponentially as a function of age by over 95% from age 25-60 with
initial preservation of T-cell diversity [3]. T-cell diversity is compromised in advanced age and decreases
100-fold by age 75. These concepts can conveniently be decoupled in the framework above since repertoire
diversity is related to the total number of distinct immune cell clones, which in turn is related to pb, while
turnover is related to k.

We assume equal risk across all ages of AML founder arrival sensitive to initial immune targeting and
neglect more subtle fitness changes imparted by driver and passenger mutations, an assumption mitigated
by the low mutational burden of AML. Thymic turnover k is modeled as a Hill function that decreases two
orders of magnitude (k = 1 to k = 10−2) centered at age 20 (Fig. S5A). The probability, p̃, that an individual
TCR recognizes tumor antigenic peptide is estimated at p̃ ∼ 10−6 as characterized previously in [4]. The
Immune repertoire diversity, represented by the total number of effective T-cell clones, Nt, is assumed to
decrease two orders of magnitude (Nt = 2.5·106 to Nt = 2.5·104) centered at age 67 (Fig. S5B). In each case,
Hill coefficients were selected to emulate the assumed immune profile. The background escape probability
may be calculated using the total repertoire diversity via pb = (1− p̃)Nt , as done previously [4] (Fig. S5C).
As before, we fix d = 0.20, and approximate r ∼ d/10 for AML so that the growth rate is definitively
below the maximal immune targeting rate. We estimate µ ∼ 10−9 to represent the rate of rare arrivals of
immune-evasive phenotypes. We expect µ to be no larger than this, but found that this parameter most
influenced incidence in early age and this order of magnitude estimate best characterized early age incidence
(described below). We take M ∼ 106 and R = 102 so that m0(r) = 5000. Using these functional forms,
we calculate escape, Pe, and evasion, Pec,µ, comparing these predictions to age-related incidence (Fig. S6).
Gender-specific differences exist between male and female thymic output as well as AML incidence [5], and
although we do not model this here, the relative reduction in female relative to male incidence coincides with
greater immune functioning in females and further reinforces the postulate that adequate immune functioning
plays a crucial role in controlling tumor incidence. We also compare this model to the multi-stage theory of
incidence that assumes increased risk proportional to a power of age [6, 7] for various numbers of ‘hits’. We
demonstrate overall better agreement in our model for the parameters selected above when compared to the
best fit versions of each multi-stage model (Fig. 5A).

The comparison of our analytical estimate against empirical data suggests that AML incidence can be
divided into three parts: minimal cases of early disease due to the rare arrival of type-2 cells that escape
immune detection, a slight increase in incidence during middle age due to increased risk secondary to lower
turnover rates, and late-onset disease as a result of decreasing TCR repertoire diversity. In light of uncertainty
regarding the true parameter values for AML, we remark that the estimates given above are most sensitive to
the underlying cancer immune evasion rate µ, and in fact µ dominates the predicted disease incidence during
young ages, but contributes less to the behavior at larger ages. Once selected, the curve was optimized
by a parameter search for the order of magnitude of m0 and M , resulting in good general agreement for
a reasonable selections of detection and incidence sizes. Changes to these parameters affect the predicted
tumor escape probabilities, with the escape probability varying directly (resp. inversely) with m0 (resp. M).
Perturbations to the assumed ending values for normalized T-cell turnover and repertoire diversity have
the largest effect on predicted escape probabilities in advanced age. Changes in the Hill coefficients which
resulted in similar immune turnover and repertoire diversity profiles had a minimal effect on the overall
predictions.
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A B C

Figure S5: Constitutive relations for AML incidence curve. (A) Immune turnover (k) vs. age (t) is assumed
to follow k(t) = k0 − (k0 − kf )tnk/(Knk

k + tnk) (graphed for k0 = 3, kf = 3 · 10−2, nk = 8); (B) Number of
effective TCR clones (Nt) vs. age (t) is assumed to follow Nt = N0 − (N0 −Nf )tnN /(KnN

N + tnN ); (graphed
for N0 = 2.5·106, Nf = 2.5·104, nN = 10) ; (C) Escape probability (pb(t)) vs. age is calculated using number
of effective clones and the probability p̃ of a single clone recognizing tumor antigen as pb(t) = 1−pc(t), where
pc(t) = 1− (1− p̃)Nt (graphed for p̃ ∼ 10−6).

Figure S6: AML age and gender-specific incidence. Bar plot of empirical data is compared to model-derived
AML estimates Pe+Pec,µ that assumes constant cancer incidence and decreasing immunity vs age.

Our analysis suggests a correlation between age and AML incidence is explained partly by immune per-
formance and would suggest that an attempt be made to maximize thymic output and T-cell diversity in
middle and advanced age to minimize the likelihood of AML incidence. For patients with chemotherapy-
refractory AML, often treated with allogeneic stem cell therapy, the clinical focus should be on maximizing
repertoire diversity and thymic output post-transplant. More generally, efforts to mitigate cancer occurrence
should focus on maximizing immune repertoire diversity shortly after treatment [8].

Motivated by this observation, we argued by similar reasoning that long-term immunosuppression of the
adaptive immune compartment might manifest in increased cancer occurrence. In order to test this, we kept
all relevant parameters for AML fixed at their values in the previous investigation, and evaluated the predicted
effect of mild, chronic CD8+ T-cell immunosuppression commonly imposed post-transplant on longterm
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AML incidence. We assumed immunosuppression mildly inhibits both current and future repertoires so that
the new recognition probability 1 − pb and effective turnover rate k are scaled by α = 0.90. We considered
10-year cumulative AML incidence assuming equal risk across age groups. Our estimates predict a significant
increase in cumulative AML incidence (Fig. 5B) and are in general agreement with empirical observations
for transplant patients under chronic immunosuppression [9], further highlighting the importance of proper
immune functioning in disease prevention.
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S7 Predicted effects of immunotherapy

S7.1 Detection

Here we provide the general framework for quantifying treatment success probabilities for Chimeric anti-
gen receptor (CAR) T-cell and antigen vaccine immunotherapeutic strategies. We assume that adjuvant
immunotherapy is given following initial ablative chemotherapy or radiation to reduce tumor burden. Treat-
ment is administered at detection time TD when X1(TD) + X2(TD) = M , and assumed to quickly reduce
tumor size to minimal residual disease size X1(TD+) +X2(TD+) = mmrd . M . The time for treatment is
assumed small compared to the progression of the initial disease so that we may neglect the possibility of
type-2 cells arriving on the therapy interval. All therapies described below are assumed to occur after tumor
reduction via this treatment.

We define the event, E of overall disease elimination. In all cases, the cancer population is modeled as
an adaptive threat. Individuals presenting with disease do so only if the threat is victorious, which we recall
from Section S5 occurs if either Ee or Eec,µ occurs. The population escapes with type-2 acquisition prior
to detection on Ee,µ with probability Pe,µ, and the population escapes without type-2 acquisition prior to
detection on Ee,µc with probability Pe,µc . The overall disease elimination probability may be factored using
the law of total probability, giving

PE ≡ PT + Pl, (S52)

for

PT ≡ P
(
E | Ee,µ

)
Pe,µ + P

(
E | Ee,µc

)
Pe,µc + P

(
E | Eec,µ

)
Pec,µ. (S53)

We make the slight distinction above between disease elimination prior to treatment (Pl), treatment elim-
ination (PE), and overall disease elimination probability (PE). Eq. S53 will be applied to quantify the
immunotherapy strategies investigated below.

S7.2 CAR T-cell therapy

CAR T-cells are a class of ex-vivo engineered T-cells with artificial T-cell receptors (TCRs) designed to tar-
get an epitope differentially present on cancer cells [10]. Variations and improvements, such as high-affinity
MHC-derived CARs as well as co-stimulatory signaling, have enhanced the functionality of these thera-
pies, particularly in solid tumors that, unlike their hematological counterparts, often lack co-stimulatory
molecules [11, 12]. Importantly, the CAR T-cell receptor is not limited to MHC-I recognition and can
recognize a number of preferentially expressed tumor cell signatures, including surface proteins and carbohy-
drates [13]. CAR T-cell therapy has been successful in treating a number of malignancies, including treatment
refractory acute lymphoblastic leukemia, where mutation burden (and therefore tumor neoantigen availabil-
ity) is low [14, 15]. Their success in solid malignancies requires selection of preferentially over-expressed
tumor-specific antigens in the bulk tumor [16,17].

Our analysis considers the case where identification of such tumor-specific CARs has been obtained.
In contrast to the entire immune repertoire problem considered earlier, a clonal CAR T-cell population
is introduced against a specific surface epitope following chemoablative therapy. We assume CAR T-cell
co-stimulatory signaling circumvents the conventional immune detection limit following its initial epitope
encounter, so that detection occurs deterministically at some size mcar following ablative therapy. For sim-
plicity, we assume that mcar ≤ mmrd for some sufficiently large but fixed dosage of CAR T-cells so that
detection occurs immediately at size mmrd, but the following approach is general enough to handle the
opposite case (mmrd < mcar) with minimal modification. In this case, E represents the event that CAR
T-cells, engineered against a ubiquitous target expressed on the current cancer cell population, recognize
and eliminate the threat. We allow for the potential emergence of a CAR T-cell evasive phenotype, which
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may in general arrive at rate µcar distinct from general TCR evasion rate µ. We neglect the rare event that
an epitope-evasive clone is present prior to treatment, given the lack of fitness advantage for such a threat
prior to therapy.

Under the above dynamics, E occurs with the same probability regardless of the history prior to detec-
tion time, since all cells are assumed detectable immediately following treatment at time TD+. Moreover,
recognition occurs deterministically at size mmrd, so that Pe = 0 which implies that Pµ = Pec,µ. Thus, all
three of the conditional success probabilities, P

(
E| ·

)
, in Eq. S53 reduce to the deterministic recognition

case with detection limit mmrd and post-treatment starting size mmrd, so that

P
(
E | Ee,µc

)
= P

(
E | Ee,µ

)
= P

(
E | Eec,µ

)
= Pµc = 1− Pec,µ

(
mmrd;mmrd

)
. (S54)

Here, we introduce some slight modifications to Eq. S28 to account for a process starting at X(TD+) =
mmrd, deterministically recognized at m ≥ mmrd, and perhaps having a distinct evasion rate µcar dependent
upon the CAR T-cell target. We denote this modification by Pec,µ(m;mmrd), which takes the form

Pec,µ(m;mmrd) ≡ Pec,µ

(
m | X(TD+) = mmrd

)
= 1− (1− µcar)

m−mmrd

(
d− (1− µcar)r

d− (1− 2µcar)r

)mmrd

. (S55)

Thus, in the CAR T-cell case we may estimate treatment success probability from Eq. S53 as a function
of Eq. S55 and Pl(m0 < m < M), given by Eq. S51, as

PT = Pµc ·
(
Pe,µ + Pe,µc + Pec,µ

)

=
(
1− Pec,µ(mmrd;mmrd)

)(
1− Pl(m0 ≤ m ≤ M)

)
. (S56)

CAR T-cell treatment benefit is illustrated under a variety of immune parameters in Fig. 6. We observe
that CAR T-cell therapy is predicted to be largely beneficial for both immune-competent and immune-
compromised patients, consistent with the fact that CAR T-cell therapy functions independently from the
status of the native T-cell repertoire. CAR T-cell therapy is predicted to be less effective against faster-
growth threats, as the prolonged death phase allows a greater change of CAR T-cell evader arrival.

S7.3 Autologous neoantigen vaccines

Autologous neoantigen vaccines are another immunotherapeutic strategy which relies on the delivery of
(possibly multiple) tumor neoantignes to the cell in order to augment or enhance the effect of neoantigen-
specific CD8+ T-cells [18]. Contrasting their reduced efficacy in tumors with lower mutation rates [15],
neoantigen vaccines have been successful in augmenting cancer remission in highly mutagenic tumors, such
as melanoma, where the neoantigen burden is significant [19–21]. In our framework, successful immune
priming occurs when a large amount of vaccine-delivered antigen suddenly becomes available to activate
T-cells and serves to effectively reduce the detection threshold R. For simplicity we assume that a sufficient
level of tumor antigens are present so that R = 0 and any cancer size can be targeted.

In contrast to the previous case, vaccine therapy cannot rescue a patient with immune-evasive cells and
so in our model this strategy may only be successful if there is an absence of type-2 cells both before and
after treatment (i.e. on Eµc). On the therapeutically relevant event, Ee,µc , subsequent treatment success
occurs only if the threat neither escapes nor acquires an immune-evasive phenotype Eec,µc . This relevant
probability, denoted by Pl(mmrd ≤ m ≤ M ;mmrd), is related to the probability of adaptive threat loss given
by Eq. S51 modified to account for the fact that the process starts at X(TD+) = mmrd. It is given by

Pl(mmrd ≤ m ≤ M ;mmrd) ≡ 1−
(
Pec,µ(mmrd ≤ m ≤ M ;mmrd) + Pe

)
(S57)

with Pe = pe(M ;mmrd), and

Pec,µ(mmrd ≤ m ≤ M ;mmrd) ≡
M∑

m=mmrd

Pec,µ(m;mmrd) · pr(m;mmrd). (S58)
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In summary, conditional treatment success probabilities become:

P
(
E | Ee,µc

)
= Pl

(
mmrd ≤ m ≤ M ;mmrd

)
; (S59)

P
(
E | Ee,µ

)
= 0; (S60)

P
(
E | Eec,µ

)
= 0. (S61)

In Eq. S60 we have implicitly assumed that the post-treatment subset of mmrd cells from the original
population of size M always contains an evasive sub-clone if at least one type-2 cell is present at detection.
A more detailed analysis would estimate the sub-population size distribution of type-2 cells at overall size M
and quantify their presence or absence following ablation; for now, we proceed with this lower-estimate on
efficacy. Thus, treatment success probability depends exclusively on the middle term in Eq. S53. The final
required calculation measures escape probability without acquired immune evasion (Pe,µc) under adaptive,
growth limited detection as follows:

Pe,µc = P
(
Eµc | Ee

)
P
(
Ee

)

= (1− µ)M · pe
(
M ;m0

)

≈ (1− µ)M
[
I[m0>M ] + pb

(
m0

M

)k/r

· Im0≤M

]
, (S62)

where the indicator function has been used to guarantee escape if m0(r) > M . Therefore,

PT = Pl(mmrd ≤ m ≤ M ;mmrd)Pe,µc . (S63)

Vaccine treatment benefit is illustrated alongside CAR T therapy in Fig. 6. The effect of neoantigen
vaccines is predicted to be most robust against slower growing threats that would normally escape immune
detection via slow-growth.
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