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ABSTRACT
◥

The dynamic interactions between an evolving malignancy and
the adaptive immune system generate diverse evolutionary tra-
jectories that ultimately result in tumor clearance or immune
escape. Here, we create a simple mathematical model coupling
T-cell recognition with an evolving cancer population that may
randomly produce evasive subclones, imparting transient protec-
tion against the effector T cells. T-cell turnover declines and
evasion rates together explained differences in early incidence
data across almost all cancer types. Fitting the model to TRACERx
evolutionary data argued in favor of substantial and sustained
immune pressure exerted upon a developing tumor, suggesting

that clinically observed incidence is a small proportion of all
cancer initiation events. This dynamical model promises to
increase our quantitative understanding of many immune escape
contexts, including cancer progression and intracellular patho-
genic infections.

Significance: The early cancer–immune interaction sculpts
intratumor heterogeneity through the selection of immune-
evasive clones. This study provides a mathematical framework
for investigating the coevolution between an immune-evasive
cancer population and the adaptive immune system.

Introduction
T-cell immunotherapy has revolutionized modern cancer therapy,

delivering durable remission outcomes with higher rates of overall
survival for many cancer subtypes (1, 2). The tumor–immune inter-
action is quite complex, determined by the recruitment of a variety of
immune system effectors, and varies as a function of disease duration,
progression, and subtype (3, 4). Amajority of observed and therapeutic
antitumor immunity is accomplished by the cytotoxic CD8þ T-cell
repertoire, wherein immune cells recognize tumor-associated antigens
(TAA) present on the surface of cancer cells (5). Adequate recognition
leads to elimination of the target cells and expansion of the recognizing
T-cell clone. Consistent with theoretical expectations (6, 7), effective
immune repertoire detection of TAAs has been empirically validated
during natural cancer progression as well as in the postimmunother-
apeutic setting (8, 9).

One critical phenomenon that determines ultimate disease outcome
is immunosurveillance, which relates to the degree to which tumor
progression (typically in the absence of immunotherapy) is controlled
by cancer–immune coevolution. To date, a majority of our under-
standing of this complex interaction has been experimentally
driven (10–13) with immunoediting and TAA negative selection
driving early-stage disease (14, 15). Recognition of TAAs relies on
immune system discrimination between self and non-self epitopes,
which is largely achieved through host-directed tolerance mechan-

isms. First, thymic negative selection functions by deleting immature
T cells, which recognize common self-epitopes, thereby imparting
central tolerance to the T-cell repertoire (16). This process is incom-
plete, however, and necessitates subsequent peripheral tolerance
mechanisms (17, 18). Peripheral tolerance, in contrast, relies on T-cell
inhibition at a systems-level and is achieved whenever a threat is
perceived to be small based on a lower detection limit (19).

The “growth-threshold conjecture” is a key defining feature of
systems-level immune detection wherein the total rate of change, not
level, of a growing threat is the limiting determinant of immune system
recognition (20, 21). Consequently, pathogens with small individual
growth ratesmay slowly expand to large population sizes before risking
immune system detection, consistent with the observed indolent
course of intracellular viral illnesses (22) and escape of slow-growth
tumors (23, 24). The corresponding evolutionary trajectories that arise
as a result of immune detection based on threat dynamics are quite
diverse and have implications for disease prognosis (15, 25). A
mathematical framework that formalizes the underlying probabilistic
dynamics governing the tumor–immune interaction promises to shed
light on this complex process and could ultimately be implemented to
better guide patient-specific immunotherapy.

The idea of modeling tumor progression and, in particular, treat-
ment evasion is not new. Well-established stochastic models have
revolutionized our understanding of acquired drug resistance in the
setting of targeted therapy, in part, by highlighting the importance of
random mutant acquisition and clonal selection on the population
level (26, 27). Prior studies have also analyzed tumor escape using
ordinary differential equations to model the tumor–immune
interaction (28–30). A more recent analysis investigated systems-
level cancer-immune dynamics in a deterministic setting without
taking into account any evasion (23). Because the immune repertoire
and evading cancer population are both evolving systems capable of
random and repeated recognition and evasion, stochastic analysis is a
useful framework for conceptualizing tumor recognition by the adap-
tive immune system. We previously considered an extreme version of
this problem, namely an adaptive immune analogue susceptible to
permanent defeat by a single but durable stochastic evasion event (24).
Here we consider a more realistic scenario and use it to interpret data
regarding age incidence curves as well as tumor clonal evolution.
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Specifically, we introduce an analytically tractable mathematical
framework for modeling the interaction between an adaptive T-cell
repertoire capable of repeated recognition and a cancer population
that may repeatedly evolve mechanisms of immune evasion. We solve
for the cancer escape and elimination probabilities analytically and
provide a statistical framework to study the mean-variance profiles of
observed cancer coevolutionary trajectories. We apply our model to
early cancer evolutionary data and predict “common initiation and
rare progression,” wherein a majority of cancer-initiating events are
controlled by an intact immune system, of which, only a small subset
randomly escapes and leads to observed disease.

Quick Guide to Equations and
Assumptions

Our basic tumor–immune model consists of clones of cancer cells
with pure birth at rate r until they are detected by the immune system.
Recognition may occur once the tumor has reached a minimal
detection size m0 and we work assuming either all clones are detected
at size m0 with a one-time detection probability q (referred to as
deterministic detection) or an ongoing chance of detection at sizes
abovem0 (adaptive detection). Once detection occurs, cells are killed at
rate d > r, giving rise to a finite lifetime for that clone. There is also a
probability per birth event m << 1 that the clone will give rise to an
evasive tumor subclone. We previously investigated a simpler model
that assumed evasion events to be complete and durable against
recognition by all current and future T cells (24). Effectively, evading
clones were rare but catastrophic cells that were invisible to the
immune system, modeling an extreme event such as MHC-I down-
regulation. In general, it is more reasonable to assume that most
evasion events impart transient escape via cancer antigen downregula-
tion, for example, from recognition by the current dominant effector
T-cell clone, with future detection of less-frequent or de novo TAAs
possible by other T-cell clones.

We study here the clonal evolution that results from repeated
recognition and evasion events. Elimination of the parent clone follows
from its recognition and eventual elimination by the immune system.
However, the cancer population evolves if it successfully acquires an
immune-evasive daughter clone prior to elimination. This process
repeats for each subsequent population until either elimination or
escape occurs, and we refer henceforth to the periodic growth followed
by detection and elimination as a recognition cycle. To accomplish
this, we assume that any evasive clonal population has a chance of
being detected upon maturity to detection size. A typical trace of the
population dynamics generated by our model is shown in Fig. 1A–C
where clones are created by evasion and die by detection over repeated
cycles. Note that when the tumor population reaches some higher
threshold M the cancer becomes clinically observable and “escapes”
immune surveillance; in this simulation this occurs at around t ¼ 50.
Here the color code reflects subclones created during a specific cycle of
the process. In general, a given clone can give rise to multiple evasive
lineages during its lifetime. For the deterministic detection scheme, it is
straightforward to argue (24) that the number of such daughter clones
may be approximated by a Poisson distribution with parameter

l ¼ mm0d= d# rð Þ: ðAÞ

Thus, the total evader “intensity,” that is, the parameter governing
the total number of clones produced at period n, is simply gn,j ¼ jl,
where j is the number of evasive clones at period n. A generalization of
this formula for the adaptive assumption is presented in the Supple-

mentary Data. The model can therefore be framed as generalization of
the Galton–Watson branching process, well-established in modeling
biological systems (31–33), by the addition of possible cancer escape.
The process thus eventually culminates in either escape to size M or
complete eradication of the tumor. We shall refer to the expected per-
capita progeny as the branching parameter. In the deterministic case,
this value is simply l from Eq. A.

Instead of tracking the population size at a given time t along with
the distribution of arriving clones (Supplementary Fig. S1), we focus
instead on the number of evading clones, Zn, per recognition cycle, n,
starting from one initial clone (Fig. 2A). The clearance probability, or
likelihood that a clone is recognized at cycle n, is denoted by qn. This
framework can in general handle any reasonable assumptions on the
dependence of detection on cycle number. For example, it may be the
case that the immune system becomes less capable over time due to
exacerbation by an increasing number of unique clones. One could also
generalize the above treatment to allow for the recognition rate to
depend explicitly on the number of clones present at cycle n or even on
the individual evasive clone as a function of its appearance order. These
assumptions lead to an inhomogeneous Markov process relating the
number of clones at cycle n to the number of clones at cycle n þ 1
(Fig. 2B and C). For simplicity, we will mostly assume that qn is a
constant, whichwill be denoted as qc, and in this case theMarkov chain
is homogeneous in cycle number. The probability of generating k
clones in the next cycle given the existence of j clones in the current
cycle is

pnþ1;k ¼ pk
!
gn;j

"
qjn; ðBÞ

with

pk
!
gn;j

"
¼ e#gn;jgkn;j=k! ðCÞ

Figure 1.
Overview of coevolutionary trajectories. Simulations of the tumor–immune
interactions depict clonal population sizes across recognition cycles (distin-
guished by different adjacent colors) in the event of ultimate escape (A) and
elimination (B). The total population sizes are also recorded (C).
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The immune system must recognize every subclone at each period
or else the threat escapes. Thus, for j clones at period n, the escape
probability is

pnþ1;¥ ¼ 1# qjn: ðDÞ

Finally, the probability of tumor elimination is just the probability
that no evasive clones are generated and no escape occurs, namely

pnþ1;0 ¼ qjne
#gn;j : ðEÞ

Materials and Methods
All simulations, data analysis, and data visualization were per-

formed using MATLAB version R2017b.

Escape and elimination probabilities
Derivations of the escape and elimination probabilities, together

with the branching parameter, were solved using standard probabi-
listic analysis.

Simulations
All simulations of the evolutionary process were performed using a

modified Gillespie algorithm. Analyses involving escape were simu-
lated for all surviving populations until the emergence of a dominant
clone that exceeded the upper clinical escape threshold.

Cancer age incidence
Age-specific cancer incidence data for breast, bladder, kidney,

pancreas, prostate, head and neck, ovary, lung, melanoma, acute

myeloid leukemia, and chronic lymphocytic leukemia were obtained
from Cancer Research UK. Age incidence for triple-negative breast
cancer was obtained by applying Web Plot Digitizer (34) to Fig. 1 of
ref. 35 and taking a weighted average based on the empirical frequency
of reported groups (Asian, n¼ 368; Black, n¼ 509; Hispanic, n¼ 920;
White, n¼ 2521). Least-squares linear regressionwas performed on all
available incidence data between ages 0 and 40 and in a similar manner
between the age at which incidence is first measured and 40. The
corresponding least-squares slope parameter is plotted for each cancer
subtype against the mutation rate.

Evasion rates
Estimates of the per-cell mutation rates were obtained by using

median rates from the available estimates from ref. 36 for acute
myeloid leukemia (mutation rate m ¼ 3.33 & 10#7; n ¼ 134), bladder
(m ¼ 5.17 & 10#6; n ¼ 35), breast cancer (m ¼ 9.33 & 10#7; n ¼ 121),
chronic lymphocytic leukemia (m ¼ 7.67 & 10#7; n ¼ 91), head and
neck cancer (m¼ 3.17& 10#6; n¼ 181), lung cancer (m¼ 7.20& 10#6;
n ¼ 514), melanoma (m ¼ 1.32 & 10#5; n ¼ 121), ovarian cancer
(m ¼ 1.65 & 10#6; n ¼ 394), pancreatic cancer (m ¼ 1.07 & 10#6;
n¼ 13), prostate cancer (m¼ 7.33& 10#7; n¼ 227), and renal cancer
(m ¼ 1.53 & 10#6; n ¼ 225).

Statistical analysis
Correlations between the linear slope parameter of early cancer

age incidence and per-cell evasion rates were assessed using Pearson
correlation coefficient, and reported P values were obtained. For
this, the null hypothesis was that there existed no correlation
between the slope of early cancer age incidence and the per-cell
evasion rate. Rejection of the null hypothesis and the presence of

Figure 2.
Cancer–immune coevolutionary dynamics. A, A single initial clone grows, becomes recognized, and is eliminated, but not before producing immune evasive clones
(distinguished by shapes), which impart transient immunity against the current effector T-cell clone.We assume that each evader has an independent opportunity to
either escape or become recognized by the T-cell repertoire and may also give rise to additional evaders (evasion events occurring within the same
recognition cycle share the same color and are differentiated by shape). B, The state space of this discrete process is the number of distinct evasive clones at
each generational period. Escape (state ¥) and elimination (state 0) are absorbing states, and all other intermediate states communicate. C, This model may
be represented in greatest generality by an inhomogeneous Markov process with a transition probability matrix that depends on the immune clearance
probability, qjn , of each of the j clones at time n and the probability, pk(gn,j), of generating k clones from j current clones, given by Eq. C.
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significant (nonzero) correlation was assessed at a significance value
of a ¼ 0.05.

TRACERx timing of evasion events
The time to most recent common ancestor relative to cancer

initiating time for renal clear cell carcinoma was estimated from the
TRACERx renal consortium using previously published data (37). The
data were separated into two categories: evasion dominated by branch-
ing (samples K59, K167, K146, K065, K003, K150, K104, K163, K153,
K126, K108, K135, K169, K139, K145, K156, K162, K180) and
primarily linear evolution (samples K113, K165, K130, K023, K176,
K037, K143, K124, K136, K096, K027, K158, K105) based on samples
having theirmost recent common ancestor earlier or within 10 years of
clinical detection, respectively. Mean and variance estimates of the
mutational burden in patients with lung cancer were calculated from
data reported in (38). Mean-variance frontiers were plotted assuming
the quadratic relationship of Eq. J parameterized by some unknown
fraction of relevant evasion eventsa, wherewe consideredaup to 10%.
Immune-enhanced, immune-compromised, and immune-neutral
regions were defined by calculating all allowable mean-variance
frontiers based on trajectories generated by the domain of interest.

Results
The following sections present the main findings of our analysis.

Full mathematical details are provided in the Supplementary Data.

Escape and elimination probabilities
Let En (resp. Fn) be the event that the threat escapes (resp. is

eliminated) at period n. One can directly derive a backwards dis-
crete-timemaster equation that determines the long-time limit of these
splitting probabilities. Specifically focusing on the elimination and
taking q ¼ qc to be constant, we have

Pk Fnð Þ ¼ qkc
X¥

j¼1

Pj Fnþ1ð Þe#lk lkð Þj=j!; ðFÞ

where Pk (Fn) is the probability that a tumor trajectory having k clones
at cycle n eventually leads to complete tumor elimination. Clearly, each
clone is independent from its future trajectory and hence Pk (Fn) ¼
P1 (Fn)

k. Thus, Eq. F becomes a closed-form equation for P1 (Fn)

P1 Fnð Þ ¼ qc
X¥

j¼1

P1 Fnþ1ð Þje#llj=j! ðGÞ

Taking the steady-state limit of this equation yields an equation for
the asymptotic elimination probability p'

p' ¼ qce#l 1#p'ð Þ ðHÞ

One can similarly find the asymptotic value of the escape probability
and verify that it is just 1- p'; in other words, the system always chooses
one of the absorbing states in the long-time limit. A more complete
treatment presented in the Supplementary Data allows this result to be
extended to evaluate the full time-dependent value of P1 (Fn) along
with more general assumptions for the qn.

The above outlines the model for the deterministic case since
detection, should it occur, must do so at size m0. Adaptive detection
incorporates immune decline via an immunomodulatory parameter
n > 0 that results in larger average detection sizes and yields a similar
elimination probability ~p' (See Supplementary Data for full details).
This analytic framework above agrees well with results obtained from
simulating the full coevolutionary process (Fig. 3A and B). “Escape by

underwhelming” is an important experimentally observed feature
wherein threats of intermediate growth rates are at a survival disad-
vantage relative to their faster and slower growing counterparts (39).
Our model recapitulates this behavior for minimal detection thresh-
oldsm0 limited by the total cancer growth rate (Fig. 3C), in agreement
with the growth-threshold conjecture (22). This simple theoretical
framework generates a significant degree of diversity in dynamical
behavior, governed completely by the clearance probability and the
branching parameter (Fig. 3D; Supplementary Figs. S2–S10).

Our foundational modelmay also be adapted to investigate a variety
of assumptions on the nature of immune escape, including declines in
immune clearance as a function of elapsed time and total surviving
clone numbers (Sec. S4.4, Intertemporal immune decline; Sec. S4.5,
Clone frequency-dependent recognition) along with their effects on
the likelihood of cancer elimination and escape (Supplementary Figs.
S2 and S3). Prior empirical studies have proposed the existence of an
equilibrium state, wherein a cancer population is neither fully elim-
inated nor grows to overwhelm the host (40, 41). Surprisingly, our
framework would suggest that ultimate coexistence is not reasonably
predicted, occurring only when unreasonable assumptions are
imposed on the clearance probabilities (Sec. S4.3).

Differences in cancer early age incidence correlate with evasion
rate

As proof-of-principle that local physiologic changes in immune
function may affect observed cancer frequency, even among healthy
individuals, we study the effects of physiologic declines in immune
turnover on increases in early age incidence for various cancer types
using publicly available large population datasets (Supplementary
Fig. S6; ref. 42). Previous studies have shown that age-incidence data
can be fit to simple models assuming a declining immune system with
age (6, 43). Our dynamical model predicts, all else being equal, that
tumor escape likelihoods vary directly as a function of evasion rate m
implicitly through the branching parameter. Although evasion need
not be limited exclusively to genomic mechanisms, we use experi-
mentally derived per-cell mutation rates obtained from a large pan-
cancer analysis as an indirect measure of evasion (36).

We calculate the slope parameter of linear regression for early age
incidence (Fig. 4A; Supplementary Fig. S6) and find a strong corre-
lation between these values and the evasion rate. Aggregate breast
cancer incidence appears to be an exception, perhaps a result of early
screening detection and the incidence following puberty of hormone-
sensitive disease. Restricting the comparison to triple negative breast
cancer (35) reveals statistically significant correlation between inci-
dence increases and evasion rate (Fig. 4B; Supplementary Fig. S7).
Decreases in immune function modeled via an increased adaptive
parameter n (see Supplementary Data), assumed directly proportional
to early age increases, result in increased ultimate escape probability,
1# ~p'.We find excellent agreement in the predicted incidence slope-m
profile for the best-fit scaled range of immune function parameter n
(Fig. 4C). Moreover, using this normalized range for n in the model
predicts a linear increase in incidence for all observed mutation rates
(Fig. 4D). Together, these findings demonstrate that cancer progres-
sion and escape are well-explained by variability in immune function
across nearly all cancer types.

Evolutionary timing of renal clear cell carcinoma predicts
prolonged coevolution with common tumor incidence and rare
progression

Given the ability of ourmathematical model to link observed cancer
evasion and recognition cycle timing to underlying tumor–immune
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Figure 3.
General dynamics of the tumor–immune coevolutionary model. Escape (red) and elimination (green) probabilities are plotted as a function of recognition cycle
number and compared to analytic escape (black dashed line), assuming supercritical (l¼ 1.04;A) and subcritical (l¼0.96;B) branching (in each case, qc¼0.95 and
simulations are averaged over 106 iterations). C, The dynamics induced by Eq. H permit a unique limiting elimination probability, p' , which is plotted as a function of
clearance probability and relative net growth rate (l calculated using Eq. A, with m¼ 10#6,d¼0.2,R¼ 104, andm0¼R/r).D,Avariety of evolutionary trajectories are
plotted conditional on ultimate escape, assuming various clearance and branching parameters (in all cases, deterministic recognition was assumed, withm0 ¼ 500
and r/d ¼ 0.5).

Figure 4.
Cancer incidence and evasion rate.A, The least-squares linear regression slope parameter of cancer early age incidence (between ages 0 and 40 years) is calculated
for a variety of cancer subtypes (age at primary disease; melanoma shown); B, Rate of change in cancer early age incidence versus evasion rate. For each age
incidence curve, linear regression is performed for incidence between ages 0 and 40 years. This parameter is plotted as a function of per-cell mutation rates for each
cancer type.C,Assuming that the relationship between age and n is linear, age¼ kn, the slope in cancer age-incidence can be calculated as a function of increasing n,
and are plotted for k that gives the least-squares error as compared with the experimental data. D, This parameterization consequently predicts linear increases in
early cancer incidence as a function of diminished immune performance for all observed ranges of evasion rates m.

Stochastic Cancer-Immune Coevolution
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coevolutionary dynamics, we next assessed the extent of immune
evasion and clearance observed in cancer evolutionary data. The
TRACERx renal clear cell carcinoma (RCCC) dataset (37) was par-
ticularly useful, providing estimates on the timing of landmark evo-
lutionary events. Surprisingly, and consistent with model behavior
under sustained control (Fig. 3D, qc¼ 0.9,l¼ 0.96), the authors found
extended periods of clonal evolution sustained by small population
sizes (estimated to be of order 102 cells). Using the arrival time of the
most recent common ancestor (MRCA) as a representative of escape,
we estimated the expected number of recognition cycles given the
observed intervening time between MRCA detection and disease
initiation. If tm is the time it takes a clone to grow tominimal detection
size X(tm) ( 102 and TM is the times it takes to grow to ultimate
detection size X(tm) ( 109, then the intervening time, assuming
n recognition cycles occurs, is given by Dt ¼ tM # ntm. From this,
we can estimate the number of recognition cycles via

n ¼ 7ntmð Þ=2 tM # ntmð Þ; ðIÞ

where ntm and tM are the observed times (see Supplementary Data for
details). Our calculations predict that, on average, RCCC undergoes
approximately 27 distinct, immunologically relevant recognition
cycles prior to escape (Fig. 5A and B; Supplementary Fig. S11A).

The parameter range that generates this behavior is near criticality
ðl<1Þwith high clearance probabilities (qc approaching 1), suggesting
effective immune handling of renal cell threats (Fig. 5C; Supplemen-
tary Fig. S11B). To further investigate the extent of immune protection,
we used parameter estimates consistent with these findings to assess

the frequency of observed cancer incidence relative to the total number
of (unobserved) cancer-initiating events, and predict that initiation is
18 times as frequent as measured incidence. These results suggest that
the adaptive immune system actively filters many potential threats
manifesting as de novo initiating cancer clones, but may occasionally
miss due to statistical chance, in support of the “bad-luck hypothe-
sis” (44). The resulting population dynamics closely resemble those
observed in the cancer incidence data, with a large disease period
consisting of clonal evolution with low tumor burden, followed by
either elimination or escape with extensive subclonal evolution
(Fig. 5D).When separating samples into categories based on extensive
linear or branched evolution and repeating this analysis, we find that
patients with disease dominated by linear evolution are predicted to
have significantly larger cycle numbers (57 ) 35) with a concomitant
increase in the number of predicted initiating events relative to
observed incidence. This behavior contrasts with trajectories domi-
nated by branched evolution, which have a reduced cycle number (5)
2) with increased escape probability (Supplementary Fig. S12).

Fluctuations in lung cancer preceding escape partition disease
subtypes based on immune function

Given the predicted implications of immune performance on elim-
inating early and indolent disease, we wanted to investigate the relation-
ship between disease subtype and predicted immune status. Available
data on large cohort patients with lung cancer (38) provided enough
samples for each studied subtype to estimate mean and variance profiles
for thedistributionof clonalmutational events.This analysiswas repeated
for each lung cancer subtype and then comparedwith all predicted values

Figure 5.
Evolutionary dynamics of renal clear cell carcinoma. A, Relative timing of the TRACERx renal time to MRCA versus time to clinical escape implies an average of 26.6
recognition cycles, which restricts the range of allowable values ofqc and l in the coevolutionmodel (red line traces the contour line for relevantmean cycle number).
B, A typical stochastic realization of the clonal branching that occurs in the deterministic case before and after escape (colors distinguish adjacent subclones arising
within the same cycle number).C,Minimal values of observed clearance probability provide an upper estimate for the observed escape probability at 1/18 (plotted as
a function of qc and l; green line traces the contour line for relevant escape probabilities). D, Simulation output of the total population size as a function of time for
various realizations of the process.
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in the model. Because only a small (unknown) fraction a << 1 of total
mutations are expected to impart immune evasion, we consider the
resulting allowable mean-variance frontier assuming a range of small a.
Very briefly, for X being the total number of clonal nonsynonymous
mutational eventswith respectivemean andvariance given bymX and s2

X ,
the mean and variance for the fraction aX that are relevant to immune
evasion relate to the observed parameters mX and s2

X via

E aX½ + ¼ mXa;

Var aXð Þ ¼ s2
Xa

2:
ðJÞ

Equation J defines a quadratic mean–variance curve parameterized
by a that can be applied to compare the observed curves against all
allowable simulated parameters in the domain considered (Fig. 5A
and C) to determine model conditions that are consistent with
empirical data. Our above model defines a baseline relationship that
well characterizes the reported mean-variance profiles across all lung
cancer evolutionary data subtypes (Fig. 6; Supplementary Table S1).
However, several variations in the mean-variance frontier are only
achievable in our generalized model assuming either immune sup-
pression or heightened immune surveillance (see Supplementary Data
for full details). Interestingly, squamous cell carcinoma, and to a lesser
extent positive smoking status, are more consistent with a process that
is significantly immunosuppressed, suggesting that the observed pat-
tern of mutational variability emerges in the setting of reduced
immune targeting efficiency. Intriguingly, the predicted mean-
variance frontier requires enhancements to immune clearance rates
over successive periods to explain the nonsmoker signature (Eq. S123).

Discussion
The underlying early clonal architecture of an evolving cancer

population contains a significant amount of information related to

cancer progression and the extent of immunosurveillance. Under-
standing this complex behavior is essential for better predicting the
extent of tumor immunoediting, measuring the frequency of disease
progression relative to incidence, estimating immune targeting effi-
cacy, and proposing optimized treatment strategies conditioned on
post-escape clonal distributions. Here, we developed a stochastic
population dynamical model of the battle between an evolving cancer
population and the CD8þ T-cell immune repertoire. Prior models of
the cancer–immune interaction have explicitly represented and
tracked immune effectors as a distinct population (22, 29). While
useful for describing population control in a variety of contexts,
including nonimmunogenetic tumors where immune evasion is a
nondominant contributor to cancer progression, this approach falls
short in characterizing the phylogenetic architecture and elimination
probabilities of evasive cancer subclones following recognition via the
adaptive immune system. Our alternative formulation explicitly mod-
els recognition on the population level assuming that the cancer
compartment may randomly acquire evasive clones, each of which
requires distinct T-cell clones in the immune repertoire for recognition
and control. We made the implicit assumptions that cancer adaptivity
is represented by an evasion rate m, while immune system adaptivity
depends on the repertoire diversity and turnover rates. The resulting
tumor escape or elimination behavior is thus reduced to an effective
branching parameter, l. This framework is sufficiently general for
studying the coevolution of tumor and immune system, in addition to
formulating the key issue of immune escape and elimination with
regards to the ability of the immune repertoire to keep pace with a
heterogeneous and evading cancer population.

Previous empirical studies have proposed the existence of an
equilibrium state wherein a growing cancer population can be main-
tained indefinitely (40, 41). In contrast, our model only predicts
ultimate equilibrium for the unlikely case in which recognition rates
of new clones increase dramatically as an increasing function of total
clone number. More realistic assumptions on the decline in immune
recognition, occurring either over time or when overwhelmed by a
greater number of competing clones, prevents the cancer population
from reaching ultimate equilibrium and implies that the immune
recognition process ultimately results in either escape or elimination
with certainty, given sufficient time.

The model's underlying dynamical behavior subsequently encodes
information on both the likelihood and timing of ultimate cancer
escape or elimination. Our framework highlights the importance of
immunosurveillance in early disease progression as evidenced by
differential increases in cancer incidence that scale with evasion rate
across nearly all cancer types. We utilized per-cell mutation rates as an
indirect measure of evasion capacity. Our findings were consistent
despite changing the age range used as input for the linear regression.
Indeed, many mutations are independent of immune evasion events
and may increase the antigenic burden of the cancer population. This
framework only distinguishes progeny based on an evasion event,
which results in alteration or removal of an immune target recognized
on the parent clone. Evaluating the competing effects of advantageous
antigen down-regulation and undesirable tumor neoantigen genera-
tion on overall recognition by the immune system is an important
consideration and warrants further investigation.

Using the excellent data available on the timing of early evolutionary
events in RCCC, together with the observation that early clonal
evolution is estimated to be sustained at small cell sizes, we show that
the mean number of recognition cycles is quite large, suggestive of a
drawn-out competition between immune and cancer compartments.
Our results suggest that cancer progression from early initiation to

Figure 6.
Mean-variance frontiers for lung cancer subtypes. Empirical mean-variance
frontiers are plotted using Eq. J and observed data for various LCA subtypes
(dashed lines). These are compared with predicted allowable regions in the
mean-variance space based on all parameter combinations studied in Fig. 5A
and C (colored regions). Blue region corresponds with allowable frontiers,
assuming deterministic recognition (n ¼ 0). Red region highlights areas of
nonoverlap in adaptive recognition where immune recognition is impaired (n¼
10 taken to be 10% ofm0). Green regions represent dynamics assuming immune
enhancement over time (pc,nþ1¼max{pc,¥,pc,nþ(pc,n#pn,¥/25)} forpc,¥¼0.9).
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appreciable disease only occurs a small fraction of the time, in support
of our proposed “common initiation and rare progression” postulate,
wherein most cancer initiating events are effectively controlled by host
recognition mechanisms. In the minority of cases where the cancer
population escapes, our analysis predicts this to be due to random
chance, consistent with the “bad-luck” hypothesis (44). Moreover,
partitioning of samples into groups based on trajectories dominated by
linear versus branched evolution revealed differences in mean recog-
nition cycle and relative escape likelihood, the latter group character-
ized by punctuated evolution and early disease. We remark that these
results aremost sensitive to the assumedminimal population size (here
taken to bem0¼ 102 as estimated empirically); the resultingmean cycle
number estimate scales as a decreasing function of m0 as 2/log10 m0.
Despite this, significant and prolonged coevolution is still predicted
(15 recognition cycles in renal cancer patients) assuming an order of
magnitude increase in the minimal detection size. Although empir-
ically challenging, further investigation into the early tumor–immune
interaction following initiation could refine this estimate and shed
light on the underlying evolution of early disease for a variety of
cancers. When comparing the mean-variance frontiers in the clonal
distributions of TRACERx LCA subtypes, we found that observed
evolutionary trajectories for squamous cell carcinoma and positive
smoking status were consistent with simulated profiles assuming
immune impairment, while nonsmokers and adenocarcinoma fol-
lowed an opposite trend. Our results demonstrate the utility of further
experimental investigation into the benefit of distinct treatment
strategies based on cancer subtype and predicted immune function
of each patient.

Cancer evolution is complex and highly variable owing to the
dynamic interaction that occurs between tumor cells and the adaptive
immune system. Improvement in our understanding of cancer pro-
gression therefore requires a detailed description of individual disease
evolutionary trajectories. Toward this end, we have developed a
mathematical framework that models a heterogeneous population of
cancer cells subjected to adaptive immunosurveillance. When applied
to empirical data, our model is a useful tool for studying the tumor–

immune interaction as it establishes a fundamental relationship
between evasion and the observed branching structure that emerges
during disease progression. Although we have focused our analysis on
describing the control and progression of cancer, our model is broadly
applicable in understanding similar phenomena, such as intracellular
infection by pathogens that evolve mechanisms of immune evasion. In
HIV, for example, the delayed minimal disease burden produced by
repeated recognition cycles in our model shares some general features
of the latent period (45). Future efforts to apply this model in a broader
context may provide insights regarding the observed dynamics of
slow-progression intracellular threats.
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in a Stochastic Model of the Cancer-Immune

Interaction
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S1 Overview
Here we lay the general theoretical groundwork for studying stochastic co-evolution between the adaptive
immune system and a threat like cancer that may acquire immune evasive phenotypes. We build on our
earlier model that studied immune recognition in the special case that a threat acquires complete immune
evasion, such as via MHC-I down-regulation. This time, we study intermediate levels of evasion and account
for the possibility of continual, adaptive recognition. Sec. S2 provides a brief outline of the model. Sec.
S3 states the transition probability matrix for the most general model. Sec. S2.3 solves for escape and
elimination probabilities for this model when detection size is assumed fixed, while Sec. S5 considers the
case when detection size may vary stochastically for each clone. Sec. S6 discusses observed evolution following
escape, and Sec. S7 concludes by providing an application of the model to cancer age incidence data and
characterizes early evolutionary trajectories of renal clear cell carcinoma and non-small cell lung cancer.
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S2 Model development
Previously, we proposed and investigated a mathematical model of cancer-immune interaction under adap-
tive immunosurveillance limited by the a lower threshold determined by the tumor net growth rate. We
demonstrated consistency between this framework and empirical observations, including ‘sneak-through’ of
slow-growth threats, AML age-specific incidence, and increases in incidence corresponding to poorer immune
function [1]. This framework considered tumor evasion and immune escape for two phenotypes: immune-
detectable cells with intact mechanisms of antigen presentation, and rare but devastating immune-evasive
cells that had evolved mechanisms for complete adaptive immune evasion. Here, we wish to extend the anal-
ysis to a (possibly large) collection of clonally diverse tumor populations, each with an intermediate evasion
potential. We distinguish each clone based on sufficient phenotypic diversity from any prior progenitors so
that the immune system must independently recognize it.

S2.1 Cancer population dynamics
Previously, we investigated systems having ‘all-or-none’ immune evasion potential. Evasion, if it occurred,
automatically resulted in population escape. The relevant parameters for this two-compartment model
included a sensitive (type-1) cell population, y1(t), and an evasive (type-2) population y2(t). Both cell types
were assumed to divide at a per-cell rate of r, and type-1 cells had an evasion rate of µ ! 1. If type-1 cells
were recognized by the immune system, then they were eliminated at a per-cell rate of r̃ > 0. Type-2 cells
were incapable of subsequent recognition. If S1 denotes the time of type-1 cell recognition, then transitions
associated with this system can be written as:

t < S1 :
(
y1(t), y2(t)

)
→
(
y1(t), y2(t) + 1

)
at rate µry1(t) + ry2(t)(

y1(t), y2(t)
)
→
(
y1(t) + 1, y2(t)

)
at rate (1− µ)ry1(t) ≈ ry1(t)

t ≥ S1 :
(
y1(t), y2(t)

)
→
(
y1(t), y2(t) + 1

)
at rate µry1(t) + ry2(t)(

y1(t), y2(t)
)
→
(
y1(t)− 1, y2(t)

)
at rate [d− (1− µ)r]y1(t) ≈ r̃y1(t) (S1)

Here, our primary goal focuses on a generalized framework for studying systems evolving intermediate
evasion states that may confer temporary immune shielding, but may also be recognized following additional
turnover in the adaptive immune compartment. As above, each clonal population undergoes net birth that
is either unopposed, resulting in escape, or is followed by recognition and subsequent immune killing. Each
cell has an evasion rate of µ ! 1 per division per cell. At a given time, with W (t) total clones observed
over the growth history, let yi(t) be the population of the ith clone, and Si the (random) time of recognition.
Then the ith clone evolves according to the dynamics

t < Si :
(
y1(t), . . . , yi(t), . . . , yW (t)(t), 0, . . .

)
→
(
y1(t), . . . , yi(t) + 1, . . . , yW (t)(t), 0, . . .

)
,

at rate (1− µ)ryi(t) ≈ ryi(t);

t ≥ Si :
(
y1(t), . . . , yi(t), . . . , yW (t)(t), 0, . . .

)
→
(
y1(t), . . . , yi(t)− 1, . . . , yW (t)(t), 0, . . .

)
,

at rate [d− (1− µ)r]yi(t) ≈ r̃yi(t), (S2)

with new clones arriving according to

(y1(t), . . . , yW (t), 0, . . . ) → (y1(t), . . . , yW (t)(t), 1, 0, . . . ) at rate µr

W (t)∑

i=1

yi(t). (S3)
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S2.2 Clonotype population dynamics
The above transitions are complicated to analyze analytically in part owing to the difficulty in tracking
the origin of a possibly unbounded number of new clones. Instead, we focus on the number of total clones
Zn present at a given recognition cycle. In contrast to W (t), which is nondecreasing in time and counts
clones of zero size, Zn records the current number of non-extinct clones. We define the nth recognition cycle
to be n-time steps following the growth and elimination of the founder clone. In this way, every evasive
clone arising from the founder population is assigned to recognition cycle n = 1 (red clones in Fig. 2A).
The founder population y1(t) either escapes, or is recognized and eliminated by time S̃1 and discrete period
n = 1, possibly generating X1 distinct evasive clones. The number of clones initially is Z0 = 1 and the
number after the first recognition cycle is Z1 = X1. Each new evading clone has an independent chance of
escaping. If this occurs, the process ends, but otherwise all clones are recognized and become extinct by
period n = 2. This process continues, and the number of clones present at the nth discrete time step is Zn.

In shifting our focus from the continuous-time population size dynamics to the embedded, discrete-time
clonal structure, we are able to characterize clonal evolution and escape as a branching process for each
recognition cycle [2, 4]. We assume no bound on the total population size for analytic convenience (the
resulting effects of finite size restrictions are considered in Sec. S6), and the process stops if either extinction
or escape occurs. The state space, S, for Zn is the non-negative integers and infinity,

S = Z+ ∪ {∞}, (S4)

where state Zn = 0 corresponds to extinction of the cancer population, and Zn = ∞ is the state of immune
escape, meaning that at least one of the clones completely avoided the immune system. The latter repre-
sentation of the escape state coincides with the notion that any given sub-clone can generate an unbounded
number of progeny if it escapes and will be convenient for Secs. S4.1, S6. For clarity, we order our state
space in the all analyses to follow according to S = {∞, 0, 1, 2, . . . }.

S2.3 Deterministic recognition arrival rates
Under deterministic recognition with possible escape, the ith clonal population at time n is either detected at
some fixed size yi = m0 with probability qn,i or escapes detection altogether with probability 1− qn,i. This
generalizes our earlier framework where n = 1 always and we had assumed that q1,1 = 1 [1]. Prior modeling
results imply that the number of new clones generated from a single clone during net growth to size m0 prior
to recognition (t < Si) is well-characterized by a Poisson-distributed random variable with intensity µm0,
while post-recognition (t ≥ Si) clones arrive at an approximate intensity of µm0r/(d− r) [1]. Thus the total
number of new clones obtained from the ith clone at period n is modeled as a Poisson-distributed random
variable with parameter

λ = µm0d/(d− r) ≡ λ0m0, (S5)
so that λ0 ≡ µd/(d−r) describes the mean clone arrival rate for a population detected at size m0. If there are
j distinct clones present at period n, then the number of new clones in the next period is Poisson-distributed
with parameter

γn,j = jλ (S6)
as it is the sum of j IID Poisson replicates. Thus, the intensity of new clone arrivals is the product of clone
number, population size at detection, and the per-population arrival rate.
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S2.4 Stochastic recognition arrival rates
As in the deterministic case, the ith clonal population at period n may be detected with probability qn,i
or may escape with probability 1 − qn,i. Here however, recognition sizes are stochastic and allowed to
occur at any clone population sizes larger than detection threshold m0. In this case the intensity parameter
characterizing the arrival of new clones is no longer fixed at λ as above, but instead a random variable itself,
which we denote as Λn,i. This random parameter represents the average number of new clones obtained
from the ith clone at period n and may take values:

Λn,i ∈
{
λ0m0,λ0(m0 + 1),λ0(m0 + 2), . . .

}
. (S7)

If there are j distinct clones present at period n, then the number of new clones at time n + 1 is Poisson-
distributed with random parameter Γn,j , given by

Γn,j =
j∑

i=1

Λn,i. (S8)

In this framework, deterministic recognition is a special case of adaptive recognition where Γn,j = jλ
with probability one for each period n and total clone number j. Implicit in this setup is the assumption
of unbounded clone sizes, albiet with rapidly decaying tail probabilities. This is a slight modification of our
prior work, where we modeled escape probabilities related exclusively to the current repertoire [1]. Here,
qn,i relates to lifetime immune escape at or beyond detection size m ≥ m0, and subsequently parameterizes
the current and future immune repertoire. The underlying distribution governing Λn,i relates strictly to
variability (or impairment) in the ability of the repertoire to recognize threats close to the detection limit.

S2.5 Timing
As mentioned above, discrete periods in this framework are related (but not identical) to the elapsed time.
We briefly outline the estimate of the arrival time of each clone in a given period. From previously [1], we
have that the intensity of Poisson arrivals is given by

η(t) = µri (S9)

when there are i cells in a given clonal population. The inter-arrival times for the population at size i to
grow (resp. shrink) by one, written ∆Si (resp. ∆S̃i), may be approximated by their mean values si = 1/ri
(resp. s̃i = 1/r̃i, with r̃ = d− r). The probability density for the arrival time of the nth clone is given by

fn(t) =
mη(t)n−1(t)

(n− 1)!
η(t)e−mη(t), (S10)

where
mη(t) ≡

∫ t

0
η(τ)dτ, (S11)

is the mean value function. This allows for a more detailed description of arrival times in the order of clone
appearance. Distributions for the first five clones are plotted in Fig. S1.
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Figure S1: Distribution of inter-temporal clone arrival times. Population dynamics (red dashed lines) are
compared to the distribution fn(t) of arrival times for the nth clone (gray solid lines for the first five arrivals)
with (A) r = 0.05, (B) r = 0.10, and (C) r = 0.15 (d = 0.10, m0 = 5 · 105, µ = 10−6.)
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S3 General Framework
Let πn,k represent the probability of having k evasive clones after n recognition cycles. The discrete time
Markov process is in general not time homogeneous, its evolution characterized by πn+1 = πnPn, with
transition probability matrix Pn = P

(
Zn+1 = j | Zn = k

)
, given by:

Pn =

∞ 0 1 · · · k · · ·
∞ 1 0 0 · · · 0 · · ·
0 0 1 0 · · · 0 · · ·
1 1− qn qnp0(Γn,1) qnp1(Γn,1) · · · qnpk(Γn,1) · · ·
2 1− q2n q2np0(Γn,2) q2np1(Γn,2) . . . q2npk(Γn,2) · · ·
...

...
...

... . . . ...
j 1− qjn qjnp0(Γn,j) qjnp1(Γn,j) · · · qjnpk(Γn,j) . . .
...

...
...

...
... . . .

(S12)

where the qn represent fixed probabilities for immune clearance of each clone at time n, and

pk(Γn,j) = e−Γn,j (Γn,j)
k/k! (S13)

The evolution is subject to initial condition π0=[0 0 1 0 . . . ].
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S4 Deterministic recognition dynamics
The intensity parameter in Eqs. S12-S13 under deterministic recognition simplifies to

Γn,j = γn,j = jλ, (S14)
Moreover, if clearance probabilities are homogeneous in time and clone number, qn = qc, so that the

Markov chain in Eq. S12 simplifies to the following homogeneous probability matrix:

P =

1 0 · · · 0 · · ·
0 1 · · · 0 · · ·

1− qc qcp0(λ) . . . qcp2(λ) · · ·
1− q2c q2cp0(2λ) . . . q2cp2(2λ) · · ·

...
... . . . ...

1− qjc qjcp0(jλ) · · · qjcpk(jλ) · · ·
...

...
... . . .

(S15)

with
pk(jλ) = e−jλ(jλ)k/k! (S16)

and subject to initial condition π0=[0 0 1 0 . . . ].

Let p̂Tk be the kth column vector of P excluding states ∞ and 0, and similarly π̂n be the row vector πn

of states {1, 2, . . . }. Let πn,∞, πn,0, and πn,j denote the probability of escape, elimination, and having j
evasive clones at time n, respectively. For this system, we have

π1,∞ = 1− qc, (S17)
π1,0 = qcp0(λ), (S18)
π1,j = qcpj(λ), (S19)

and for n > 1,

πn,∞ = 〈π̂n−1, p̂∞〉+ πn−1,∞, (S20)
πn,0 = 〈π̂n−1, p̂0〉+ πn−1,0, (S21)
πn,j = 〈π̂n−1, p̂j〉. (S22)

where 〈·, ·〉 denotes the usual inner product:

〈x, y〉 =
∞∑

k=1

xkyk. (S23)

We are primarily interested in characterizing cancer immune escape (resp. clearance) probabilities as a
function of clonal branching, given by πn,∞ (resp. πn,0). We calculate the splitting probabilities πn,∞ and
πn,0 below. To ease our calculation, we define the following transformation:

Tx ≡ qce
−λe−λx, (S24)

where
Tnx ≡ T ◦ · · · ◦ T︸ ︷︷ ︸

n

x. (S25)

and T 0x = Ix = x.
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We begin by evaluating the inner product in Eq. S20.

〈π̂n−1, p̂∞〉 =
∞∑

kn=1

(
1− qkn

c

)
〈π̂n−2, p̂kn〉

=
∞∑

kn=1

(
1− qkn

c

) ∞∑

kn−1=1

pkn−1,kn π̂n−2,kn−1

...

=
∞∑

kn=1

(
1− qkn

c

) ∞∑

kn−1=1

pkn−1,kn

∞∑

kn−2=1

pkn−2,kn−1 · · ·
∞∑

k2=1

pk2,k3

∞∑

k1=1

pk1,k2π0,k1 . (S26)

We interchange sums kn and kn−1 under the Fubini-Tonelli Theorem, and expand pkn−1,kn , giving

〈π̂n−1, p̂∞〉 =
∞∑

kn−1=1

(
qce

−λ
)kn−1

∞∑

kn=1

[(
λkn−1

)kn −
(
λqckn−1

)kn
]/

kn!
∞∑

kn−2=1

pkn−2,kn−1 · · ·
∞∑

k1=1

pk1,k2π0,k1

Evaluation of the kn summand and application of T ’s definition gives

=
∞∑

kn−1=1

[(
T 0qc

)kn−1 −
(
Tqc
)kn−1

] ∞∑

kn−2=1

(
qce

−λ
)kn−2

(
λkn−2

)kn−1/kn−1! · · ·
∞∑

k1=1

pk1,k2π0,k1

Continued iteration ultimately yields

〈π̂n−1, p̂∞〉 =
∞∑

k1=1

π0,k1

[(
Tn−2qc

)k1 −
(
Tn−1qc

)k1
]

= Tn−2qc − Tn−1qc. (S27)

Therefore, by Eqs. S20 and S27,

πn,∞ = πn−1,∞ + Tn−2qc − Tn−1qc, (S28)

but by the same procedure we also have that

πn−1,∞ = πn−2,∞ + Tn−3qc − Tn−2qc. (S29)

Continuing this argument ultimately yields the desired escape probability

πn,∞ = π1,∞ + T 0qc − Tn−1qc

= (1− qc) + qc − Tn−1qc

= 1− Tn1. (S30)

We take a similar approach to characterize the extinction probability πn,0 below. Here, we put x0 ≡ qce−λ.

〈π̂n−1, p̂0〉 =
∞∑

kn=1

qkn
c p0(λkn)πn−1,kn

...

=
∞∑

kn=1

qkn
c p0(λkn)

∞∑

kn−1=1

pkn−1,kn

∞∑

kn−2=1

pkn−2,kn−1 · · ·
∞∑

k2=1

pk2,k3

∞∑

k1=1

pk1,k2π0,k1 . (S31)
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As before, we rearrange and exchange kn and kn−1 sums, replace pkn−1,kn with its value, and evaluate the
inner sum, giving,

〈π̂n−1, p̂0〉 =
∞∑

kn−1=1

[(
qce

−λeλx0
)kn−1 −

(
qce

−λ
)kn−1

] ∞∑

kn−2=1

pkn−2,kn−1 · · ·
∞∑

k1=1

pk1,k2π0,k1

Taking an identical approach as in the previous case ultimately gives

= Tn−1x0 − Tn−2x0. (S32)

Therefore, by Eqs. S21 and S32,

πn,0 = πn−1,0 + Tn−1x0 − Tn−2x0. (S33)

Continued application to πn−1,0, πn−2,0, . . . , π1,0 ultimately gives

πn,0 = Tn0. (S34)

Together, we have at period n the cumulative probability of escape (πn,∞), extinction (πn,0), and pro-
gression (πn,E) to be

πn,0 = Tn0, (S35)
πn,∞ = 1− Tn1, (S36)
πn,E = Tn1− Tn0, (S37)

where progression is defined to be any state other than elimination or escape. If En ≡ [escape by n], Ẽn ≡
[escape at n], Fn ≡ [elimination by n], and F̃n ≡ [elimination at n], then πn,∞ = P (En) and πn,0 = P (Fn).
Since membership in En implies membership in En+1, we have that En ⊂ En+1 and a similar argument holds
for the sequence Fn. The probability that escape and elimination occur at period n are given respectively
by

P(Ẽn) = P (En \ En−1) = P (En)− P (En−1) = Tn−11− Tn1, (S38)
and similarly,

P(F̃n) = Tn0− Tn−10. (S39)

S4.1 Branching Process and Probability Generating Functions
S4.1.1 Conditional non-escape
This section details the process assuming non-escape, which is relevant for studying the dynamical transitions
prior to escape. If non-escape is guaranteed (qc = 1), then the general framework above reduces to a Poisson
Galton-Watson branching process (BP) [2]. In this case, the transformation T above is none other than the
probability generating function (pgf) for the progeny of the ith population member at period n, Xn,i, and is
given by

GX(s) = e−λ(1−s), (S40)
for s ∈ [0, 1]. Moreover, Zn evolves according to:

Z0 = 1,

Zn+1 =
Zn∑

i=1

Xn,i, (S41)

and the pgf of Zn+1 is the n-fold function composition of GX

GZn(s) = GX ◦ · · · ◦GX︸ ︷︷ ︸
n

(s). (S42)
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S4.1.2 General case
We generalize the familiar framework above to our process below by augmenting the original sequence of
progeny from the ith population at period n, Xn,i, to a collection, Xn,i,j , of IID Poisson(λ) random variables,
and by introducing an IID collection Yn,i of random variables taking values in {1,∞} so that P(Yn,i = 1) = qc.
Functionally, the Yn,i record the presence or absence of escape of the ith clone at period n. By definition,
the probability generating function for the Yn,i is given by

GY (s) = qcs+ lim
z→∞

(1− qc)s
z. (S43)

We relate Zn+1 to Zn via the Yn,i and Xn,i,j below. If any of the time-n clones escape, then Zn+1 = ∞. If
on the other hand all of the clones are cleared, then Zn+1 is the usual sum above. We adopt the convention
that 0 ·∞ = 0. The process evolves according to:

Z0 = 1

Zn+1 =

{
∞, Yn,i = ∞ for some i ∈ {1, . . . , Zn}∑Zn

i=1 Xn,i, Yn,i = 1 for all i ∈ {1, . . . , Zn}

}
=

Zn∑

i=1

[
(Yn,i − 1) + Yn,iXn,i,1

]
. (S44)

With some partitioning and re-arranging, we find that

Zn+1 =
Zn∑

i=1

Yn,iXn,i,1I[Yn,i=1] +
Zn∑

i=1

[
Yn,i(1 +Xn,i,1)− 1

]
I[Yn,i=∞]

=
Zn∑

i=1

Yn,i∑

j=1

Xn,i,jI[Yn,i=1] +
Zn∑

i=1

Yn,i(1 +Xn,i,1)I[Yn,i=∞], (S45)

where

IE(ω) =

{
1, ω ∈ E;
0, ω /∈ E.

(S46)

We observe that for the event Ej ≡ [Xn,i,j ≥ 1] we have that P(Ej) = 1− e−λ so that
∑k

j=1 P(Ej) → ∞ as
k → ∞. Thus, by the Borel-Cantelli lemma, elements of {Xn,i,j}∞j=1 attain a value of at least one infinitely
often, so that

∑k
j=1 Xn,i,j → Yn,i(1 +Xn,i,j) almost surely (a.s.) as k → ∞ on [Yn,i = ∞]. Thus,

Yn,i(1 +Xn,i,1)I[Yn,i=∞]
a.s.
= lim

k→∞

k∑

j=1

Xn,i,jI[Yn,i=∞] =

Yn,i∑

j=1

Xn,i,jI[Yn,i=∞], (S47)

and so by Eq. S45 the dynamics may be re-written as

Z0 = 1,

Zn+1
a.s.
=

Zn∑

i=1

Yn,i∑

j=1

Xn,i,j . (S48)

The reduced representation above represents the current model as an extension of the usual branching pro-
cess theory. This motivates the interpretation that general recognition may be viewed as a straightforward
sum of IID Poisson replicates if all clones are controlled. If on the other hand at least one clone escapes,
then the subsequent sum contains at least one collection of infinite IID Poisson random variates, which is
infinite with probability one. This representation reveals how G relates to T . We define the compound pgf

GZ(s) ≡ GY ◦GX(s) = qce
−λ(1−s) + (1− qc) lim

z→∞
e−λ(1−s)z =

{
Ts, s ∈ [0, 1);
1, s = 1.

(S49)
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And thus, GZn may be solved iteratively by the following:

GZn(s) = GZn−1 ◦GZ(s) = ... = GZ ◦ · · · ◦GZ︸ ︷︷ ︸
n

(s). (S50)

This alternative interpretation will be used to greatly simplify the more complicated derivation for the
adaptive case. We note that GZ(·) and T (·) agree except when evaluated at 1.

S4.2 Limiting Distribution
Extinction and escape clearly depend on the transformation Tx = qce−λ(1−x). We now consider limiting
behavior for πn,∞ and πn,0. We recall that x, qc ∈ [0, 1] and λ > 0.

If qc = 0, then Tx = 0 for each x so that πn,∞ = 1 and πn,0 = 0 for n > 0 and in this case escape is
certain. If qc = 1, then Tx = e−λ(1−x) so that T1 = 1, and so πn,∞ = 0 for n ≥ 0. In this case, which
we discuss in Section S4.3, immune escape never occurs as each new clone is cleared. Arguably the most
interesting case is when qc ∈ (0, 1) so that clearance is neither guaranteed nor impossible. We consider the
sequence xn = Tnx0 for n ≥ 1. If xn < xn−1 then

xn+1 = qce
−λeλxn < qce

−λeλxk−1 = xn. (S51)

A similar argument shows that xn > xn−1 implies that xn+1 > xn. This, together with the fact that
0 < T0 = qce−λ < qc = T1 < 1 implies that {πn,0}n and {πn,∞}n are both increasing sequences. It can be
shown that T admits a unique fixed point, p∗, by the contraction mapping theorem, given by

p∗ = −λ−1W
(
− λqce

−λ
)
, (S52)

where W is the Lambert W function, defined as the inverse function

W (xex) ≡ f−1(xex) = x, (S53)

with a lower branch domain of [−1/e, 0] from W (−1/e) = −1,W (0) = 0. We thus have

πn,∞ = 1− Tn1 → 1− p∗ as n → ∞; (S54)
πn,0 = Tn0 → p∗ as n → ∞; (S55)
πn,E = Tn1− Tn0 → 0 as n → ∞. (S56)

Thus, in this case, progression after a long time is impossible. Simulation results for a finite number of steps
agree with this analytic characterization, with convergence observed for super-critical and sub-critical cases
(Fig. 3A-B). The limiting extinction probability p∗ is plotted as a function of normalized net growth rate
and clearance probability in Fig. 3C, assuming detection limited by total net growth rate [1]. This process
exhibits sneak-through, wherein, all else equal, slow-growth threats have an advantage at avoiding extinction
over their faster growing counterparts, consistent with earlier modeling efforts and empirical observation.
When it comes to escape, intermediate-growth threats are at a disadvantage due to reductions in λ0 relative
to their faster and slower growing counterparts.

If in addition qc → 1 (guaranteed non-escape) and λ ≤ 1 (average production does not exceed more than
one clone per recognition cycle), then

p∗ = −λ−1W (−λe−λ) = −λ−1(−λ) = 1, (S57)

since for the lower branch W (xex) = x for x ≤ 1 and so extinction occurs with certainty. Alternatively, if
either qc = 0 or λ = 0, then p∗ = 0 escape occurs with certainty.
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S4.3 Stable equilibrium
This section briefly discusses the possibility of obtaining stable equilibrium. In particular, we are interested
in characterizing the time-homogeneous condition on clearance probabilities that allows for a state of non-
escape, non-elimination with some positive probability. We are motivated by the observation that adaptive
immunity has been implicated in maintaining occult cancer in an equilibrium state [5], and these empirical
observations distinguish equilibrium from tumor elimination and escape. Technically speaking, equilibrium
states are those that occur with nonzero probability in the long time limit. In particular, the case above
does not permit any other equilibrium states since

lim
n→∞

πn,0 + πn,∞ = p∗ + (1− p∗) = 1. (S58)

If optimistically qc = 1, we obtain a standard Galton-Watson branching process with the limiting escape
and elimination probabilities determined solely by λ [2]. In particular, λ < 1 and λ = 1 correspond to the
sub-critical and critical processes wherein ultimate extinction is certain, and therefore ultimate equilibrium
is impossible.

If however we restrict our attention to the case with λ > 1 corresponding to net expansion of clones
over the recognition cycles, and relax the assumption on per-clone clearance rate, we find that ultimate
equilibrium values are attainable. We previously assumed that the per-clone clearance rate qn,i = qc < 1
was fixed. In this case, the escape probability pesc = 1 − qjc → 1 as j → ∞ so that escape is certain for
arbitrarily large clone sizes, implying again that ultimate equilibrium does not occur with probability one.
Relaxing the constitutive form of clearance probabilities qc to allow for differences in targeting based on an
ordering of the current clones qi = qc,i so that clearance probabilities may be inhomogeneous in clone-size
makes it possible. In this case, the generalized Markov chain from Eq. S12 becomes

Pn =

∞ 0 1 · · · k · · ·
∞ 1 0 0 · · · 0 · · ·
0 0 1 0 · · · 0 · · ·
1 1− qn,1 qn,1p0(Γn,1) qn,1p1(Γn,1) · · · qn,1pk(Γn,1) · · ·
2 1− qn,1qn,2 qn,1qn,2p0(Γn,2) qn,1qn,2p1(Γn,2) . . . qn,1qn,2pk(Γn,2) · · ·
...

...
...

... . . . ...
j 1−

∏j
i=1 qn,i p0(Γn,j)

∏j
i=1 qn,i p1(Γn,j)

∏j
i=1 qn,i · · · pk(Γn,j)

∏j
i=1 qn,i . . .

...
...

...
...

... . . .

(S59)
with

pesc = 1−
j∏

i=1

qc,i (S60)

We assume monotonicity in {qc,i}i, so that additional threats either encourage or hinder immune recog-
nition. If {qc,i}i is non-increasing, then pesc ≤ 1 − qjc,0 → 1 as j → ∞. Ultimate equilibrium may be
achieved if qc,i increases quickly enough. For example, if qc,i = ai/ai−1 for ai ≡ 1 + δ/2 and δ > 0 then
{qc,i}∞i=1 < 1 is an increasing sequence. Moreover,

∏j
i=1 qc,i = aj/a0 → 1/(1 + δ) as j → ∞. Thus escape

occurs with probability pesc → δ/(δ+1). If in addition λ > 1, ultimate extinction is also not guaranteed, so
that non-escape and non-extinction may co-exist.

In summary, under most cases, ultimate equilibrium is not predicted. If there is net expansion λ > 1
and the immune system is on heightened alert to keep up with increasing clone sizes by increasing pc,i at
sufficient rates for increasing i, then in theory this is possible. not only must clearance probabilities approach
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unity as an increasing number of clones are produced, they must do so sufficiently quickly. Though difficult
to determine experimentally, such an ultimate equilibrium seems an exceedingly unlikely approximation to
reality from our findings, since the number of total tumor cells m0X scales as the number of immunologically
distinct clones X grows arbitrarily large. Additionally, evidence of immunodominance is more consistent with
immune decline, not enhancement, as increasing numbers of distinct clones are encountered under normal
conditions [8].

S4.4 Inter-temporal immune decline
Here we consider temporally decreasing clearance probabilities. This can be viewed as an extension to
our earlier work [1] wherein immune surveillance occurs over a single generation and the current clone
either became recognized or escaped via acquisition of a single, completely evasive phenotype. Our earlier
characterization represents an extreme case where a single event imparts complete and lasting immune
evasion and is easily modeled in the above framework by taking q0,1 = qc and qn = 0. This is in contrast
to the modeling effort in Secs. S4.1-S4.2 which may be viewed as the opposite extreme wherein, for each
period, the immune system is equally capable of recognizing threats in an identical manner ad infinitum until
either one clone escapes or the entire population becomes extinct. For the intermediate case, we assume that
qn = f(qc, n) is a (known) decreasing sequence of clearance probabilities with maximal clearance qc ≡ q0.
For analytic comparison, we consider the truncated sequence for qc > 0, N > 0 such that

qn =

{
f(qc, n), n ≤ N ;

0, n > N.
(S61)

Of course, qn → f(qc, n) as N → ∞. By repeating an approach similar to that of Eq. S26, we may obtain

πn,∞ = 1−
(
T1 ◦ T2 ◦ · · · ◦ Tn

)(
1
)
, (S62)

πn,0 =
(
T1 ◦ T2 ◦ · · · ◦ Tn

)(
0
)
. (S63)

Agreement between the analytical theory and simulations are given in Fig. S2. Fig. S2A provides an example
where f(qc, n) → 0 as n → ∞. in Fig. S2B, f(qc, n) → 1/2 as n → ∞. In any case, decreasing f implies no
equilibrium state aside from escape or elimination.

S4.5 Clone frequency-dependent recognition
It is also reasonable to assume that the clearance probability for a given clone decreases as the number of
total clones (and hence population members) increase, and we briefly provide an estimate of this behavior for
comparison to the prior inhomogeneous case. If there are j clones at time step n, each having population size
mj , and we assume that the clearance probability scales inversely with population size, then the clearance
probability of the kth clone at period n is

qn,k = qcmk/
j∑

i=1

mi, (S64)

assuming a maximal recognition probability of qc when there are no competing cones. Under deterministic
recognition mk = m0 and mi ≤ m0. This gives the following lower-estimate on clearance probability

qn.k ≥ qcmk/(jm0) (S65)
giving

qn,j / qc/j. (S66)
A comparison between escape probabilities for the constant and declining clearance probability assumptions
is given in Figure S3. As expected, declining clearance results in increased rates of threat escape in both
supercritical and subcritical regimes.
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A B

Figure S2: Escape and elimination probabilities with variable clearance. The probability of elimination (red)
and escape (blue) are simulated for variable decreasing immune profiles f(qc, n) (A) f(qc, n) = qc/n , (B)
f(qc, n) = (qc + n)/2n. Escape values are compared to the analytical result of Eq. S62 (dashed line). (In
each case, qc = 0.95; net growth is assumed with λ = 1.1; simulations averaged over 106 iterations.)

A B

Figure S3: Enhancement in escape with frequency-dependent declines in clearance probability. Escape
probabilities assuming clearance probabilites with constant (qn,j = qc; red) and clone-dependent declines
(qn,j = qc/j; pink) are given assuming deterministic recognition for (A) supercritical (λ = 1.1) and (B)
subcritical (λ = 0.9) branching. (Results averaged across 106 iterations for each case.)
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S5 Adaptive recognition dynamics
In this section we investigate the more general problem where individual clones may be recognized at dif-
ferent sizes, allowing a variety of subsequent daughter clone arrival rates depending on the particular clone
and recognition cycle number. This is complicated for general recognition distributions on {m0,m0+1, . . . }.
Below, we outline a particular case where a reasonable distribution is assumed, under recognition rates that
are homogeneous in time and across clones.

The clone size in the deterministic case was represented by the sum of Yn,i total IID Poisson random
variables Xn,i,j , for each clone present at time n (Eq. S48). In the adaptive case, additional clones may
arrive from the ith population by virtue of the fact that they need not be recognized at minimal size m0.
Arrival rates therefore can be represented by a base rate λ0m0 plus an additional rate that depends on the
random size at immune detection. We construct this rate below by assuming that the average number of
new clones generated from the ith clone at period n, given by Λn,i is in general of the form

Λn,i = aỸn,i + b, (S67)

where b represents the base arrival rate at minimal detection size m0, and Ỹn,i ∼ Poisson(ν) is an IID col-
lection of random variables representing the additional rate in the adaptive case owing to possible stochastic
recognition above detection size. Λn,i has support

Λn,i ∈ {b+ a, b+ 2a, b+ 3a, . . . }. (S68)

The IID requirement imposed on the Ỹn,i means that the distribution of rates for new clone arrivals are
homogeneous in clone number and time. More generally, the Ỹn,i can take any reasonable (i.e. integrable)
distribution characterizing arrival probabilities. We will see that when they are Poisson distributed we recover
homogeneity of the Markov chain. The parameter ν ≥ 0 inversely relates with general immune functioning.
Intrinsic and extrinsic immuno-modulation that results in decreased adaptive immune functioning is modeled
by increasing ν. This generalizes the previous framework where ν = 0. Λn,i is analogous to λ in the
deterministic recognition case, and the corresponding intensity of new clone arrivals for j distinct clones in
this setting is given by

Γn,j =
j∑

i=1

Λn,i = a
j∑

i=1

Ỹn,i + jb, (S69)

which is the adaptive analogue of the deterministic intensity γn,j = jλ (Eq. S6). By construction, Γn,j ∼
Poisson(jν) having support

Γn,j ∈ {jb, a+ jb, 2a+ jb, 3a+ jb, . . . } (S70)
so that for α# ≡ jb+ a*,

mj(*) ≡ P
(
Γn,j = α#

)
= e−jν

(
jν
)(α"−jb)/a

/(α# − jb

a

)
!

= e−jν
(
jν
)#
/*! (S71)

The above framework generalizes deterministic recognition, which is obtained by setting a = 0 and b = λ
so that probability mass one is assigned to Λn,i = λ and Γn,j = jλ. However, for adaptive recognition the
desired parameter selection is a = λ0 and b = λ, so that

Λn,i = λ0Ỹn,i + λ, (S72)

and Γn,j has support

Γn,j ∈ {λ,λ+ λ0,λ+ 2λ0, . . . } = {λ0m0,λ0(m0 + 1),λ0(m0 + 2), . . . }. (S73)
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This represents well the distribution of intensities as a function of random recognition sizes in the limit of
large terminal population limit M 1 m0 [1].

The deterministic analogue to Γn,j , the clone generation intensity at period n when there are j current
clones, is fixed at γn,j , so clearly,

E[γn,j ] = λj; Var
(
γn,j

)
= 0, (S74)

follows directly by definition. We introduce Wn,j =
∑j

i=1 Ỹn,i ∼ Poisson(jν) to characterize the adaptive
case. Here, the expected clone intensity is

E
[
Γn,j

]
= λj + λ0E

[
Wn,j

]
= (λ+ λ0ν)j. (S75)

Its second moment is

E
[
Γ2
n,j

]
= E

[(
λj + λ0Wn,j

)2]
= (λj)2 + 2λ0λν + λ2

0E
[
W 2

n,j

]
. (S76)

Since, Wn,j ∼ Poisson(jλ), we have that

E
[
W 2

n,j

]
= Var

(
Wn,j

)
+ E

[
Wn,j

]2
= λj + (λj)2. (S77)

Together, we have that
Var
(
Γn,j

)
= λ2

0νj. (S78)
In the deterministic case, the per-clone generation intensity, or branching parameter λ, is fixed and scales

linearly with the total number of current clones. This contrasts with the adaptive case where the branching
parameter, λ̃, is a random variable with a mean always in excess of the deterministic value by an amount
equal to the product of per-cell intensity and detection variability (e.g. λ0ν), so that

λ̃ = λ+ λ0ν. (S79)

Moreover, the variance in intensity scales linearly with the total clone number.

As before, we assume for simplicity that clearance probabilities qn = qc are homogeneous across gener-
ational periods. Let πn,k represent the probability of having k evasive clones after n recognition cycles. In
this case, Eq. S12 becomes

P̃n =

1 0 0 · · · 0 · · ·
0 1 0 · · · 0 · · ·

1− qc qcp0(Γn,1) qcp1(Γn,1) · · · qcpk(Γn,1) · · ·
1− q2c q2cp0(Γn,2) q2cp1(Γn,2) . . . q2cpk(Γn,2) · · ·

...
...

... . . . ...
1− qjc qjcp0(Γn,j) qjcp1(Γn,j) · · · qjcpk(Γn,j) . . .

...
...

...
... . . .

(S80)

with 0 ≤ pc ≤ 1 fixed, Γn,j ∼ Poisson
(
jν
)
, and

pk(Γn,j) = e−Γn,j (Γn,j)
k/k! (S81)

subject to initial condition π0=[0 0 1 0 . . . ].

Instead of guessing the proper transformation relating to splitting probabilities, we will use the BP
interpretation from Sec. S4.1 to easily obtain the corresponding PGF and transformation for the adaptive
case.
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S5.1 Branching Process and Probability Generating Functions
We characterize adaptive recognition dynamics as a branching process as we did in the deterministic case.
Below, we will distinguish elements unique to the adaptive case from the deterministic case by use of a tilde.
For example, Z̃n is the clone number at time n under the adaptive detection assumption. The adaptive
dynamics take the following form:

Z̃0 = 1,

Z̃n+1 =
Z̃n∑

i=1

[ Yn,i∑

j=1

Xn,i,j +

Ỹn,i∑

j=1

X̃n,i,j

]
. (S82)

This quantity differs from Eq. S48 by the addition of a second term. The X̃n,i,j ∼ Poisson(λ0) represent
additional clone arrivals from clone i at time n for each population size in excess of detection size m0, and
Ỹn,i ∼ Poisson(ν) represents the (random) size at which clone i is detected at time n. The pgfs of the new
random variables are given by

GX̃(s) = e−λ0(1−s), (S83)
GỸ (s) = e−ν(1−s). (S84)

The above representation allows for straightforward characterization of the overall pgf, given by

GZ̃n
(s) = GZ̃ ◦ · · · ◦GZ̃︸ ︷︷ ︸

n

(s), (S85)

with

GZ̃(s) =
(
GY ◦GX

)
·
(
GỸ ◦GX̃

)
(s) = GZ(s)e

−ν
[
1−e−λ0(1−s)

]
(S86)

related to the adaptive case via GZ(s) in Eq. S49. The corresponding transformation is given by

T̃ x ≡ qce
−λ(1−x)−ν

(
1−e−λ0(1−x)

)
(S87)

It can be shown, employing a similar strategy as in the deterministic case, that the above transformation
can be used to organize the extinction and elimination probabilities. In this case,

π̃n,∞ = 1− T̃n1, (S88)
π̃n,0 = T̃n0, (S89)
π̃n,E = T̃n1− T̃n0. (S90)

S5.1.1 Conditional non-escape
The process transitions via progression until an escape or evasion event finally occurs. This section considers
simplified dynamics assuming that escape does not occur under adaptive recognition (in a similar manner
to Sec. S4.1.1). Here we have the Galton-Watson pgf for when non-escape is guaranteed (qc = 1):

GZ̃(s) = e−λ0m0(1−s)−ν
[
1−e−λ0(1−s)

]
(S91)

with
∂GZ̃

∂s
= λ0

[
m0 + νe−λ0(1−s)

]
G (S92)
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Figure S4: Population dynamics. Evolutionary recognition trajectories under (A) deterministic recognition
and (B) adaptive recognition (ν = 500). Escape values are compared to the analytical result of Eq. S62
(dashed line). For both cases, ultimate escape occurs (escape trajectories not illustrated past m0), and colors
distinguish clones arriving across each time period (In each case, qc = 0.95; r = 0.1, d = 0.2, m0 = 100, µ
chosen so that the expected number of progeny per clone, λ or λ̃, is 1.1).

and
∂2GZ̃

∂s2
= λ2

0

[
m0 + νe−λ0(1−s)

]2
G+ λ0

[
νe−λ0(1−s)

]2
G (S93)

which is used to calculate the mean number of clones generated from a single population. Of course, the
mean should agree with the process branching parameter:

E
[
Z̃
]
= G′(1−) = λ0(m0 + ν) = λ̃. (S94)

The variance is given by

σ̃ ≡ Var
(
Z̃
)
= G′′(1−) +G′(1−)−G′(1)2

= λ0(m0 + ν) + λ2
0ν

= λ̃+ λ2
0ν. (S95)

Branching process theory [2] enables mean-variance analysis of Z̃n. In particular, for λ̃n ≡ E
[
Z̃n

]
, and

σ̃2
n ≡ Var

(
Z̃n

)
, we have

λ̃n = λ̃n (S96)
and
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σ̃2
n =






λ̃n−1σ̃2

(
1− λ̃n

1− λ̃

)
, λ̃ 2= 1;

nσ̃2, λ̃ = 1.

(S97)

We remark that the deterministic case takes the same form, replacing λ̃ with λ and σ̃2 with σ2.

S5.2 Limiting Distribution
We denote by Sx ≡ exp{−ν[1 − e−λ0 ]} ≤ 1 so that T̃ = TS. continuity of T, S implies that T̃ x − x is
continuous with T̃1 − 1 < 0 < T̃0 − 0. The existence of a fixed point p̃∗ of T̃ follows from the mean value
theorem. Explicit values for p̃∗ may be solved for numerically. We note that, as with T , a similar approach
shows that for x̃n ≡ T̃nx̃, we have that x̃n−1 < x̃n ⇒ x̃n < x̃n+1 as well as x̃n−1 > x̃n ⇒ x̃n > x̃n+1. This,
together with the fact that T̃ p∗ = Tp∗Sp∗ ≤ Tp∗, implies that p̃∗ < p∗ for all relevant parameterizations.
Since in both cases, the fixed point represents the limiting probability of extinction, this relation agrees with
the expectation that ultimate elimination should be greater in the case of deterministic recognition.
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S6 Clinical escape
The prior sections detailed escape and elimination probabilities for the deterministic and adaptive cases. In
this section, we discuss an extension of the model that accounts for observable clonal behavior that arises
post-escape or elimination. We denote by Ẑn the process that is allowed to progress up to immune escape,
assuming adaptive recognition. Let τ∞ denote the random time of escape (of course, the population becomes
extinct at elimination time τ0). We may write this time as

τ∞ = min
n

{
n : Yn−1,i = ∞, ∃i, 1 ≤ i ≤ Ẑn−1

}
. (S98)

If escape occurs at time τ∞, then a subset, N , of the Zτ∞ of clones escape. If we assume that an escaping
clone has a finite capacity to develop new clones before being detected at some upper size M , then such a
clone generates progeny clones with intensity λ∞ = µM . We introduce the collection of IID random variables
X̂n,i ∼ Poisson(λ∞). If we further order the Ẑτ∞−1 starting with the escaping clones, then we may write

Ẑn+1 =
Ẑn∑

i=1

[
Xn,i +

Ỹn,i∑

j=1

X̃n,i,j

]
, n < τ∞; (S99)

and

Ẑτ∞+1 =

Ẑτ∞∑

i=N+1

[
Xτ∞,i +

Ỹτ∞,i∑

j=1

X̃τ∞,i,j

]
+

N∑

i=1

X̂n,i, n = τ∞ < τ0. (S100)

where X̂n,i, representing the number of new progeny due to an escaping clone, are Poisson-distributed
random variables with intensity λ∞. The stopped process is given by

Ẑmin{n,τ0,τ∞}. (S101)

We also allow for a distinct clearance probability during escape, denoted qc,∞. Of course, if each clone has
an independent probability of escaping, then the number of sub-clones generated by an escaping clone, N ,
is described by

N ∼ Binomial(Zτ∞ , 1− pc,∞). (S102)
Fig. S5 provides an example of clinical escape dynamics.

A B

Figure S5: Dynamics of Escape. (A-B) Population trajectories for two stochastic realizations of the co-
evolution process with escape (in both cases, qc = qc,∞ = 0.5, r = 0.1, d = 0.2, R = 2, M = 104,
µ = 5 · 10−3, ν = 50).
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S7 Unified model of cancer-immune co-evolution
In this section we explore the level of diversity in behavior allowed by the co-evolutionary model with escape.
We begin with a proof-of-principal for the relevance of an immune model by mapping differences in observed
evasion rates to differential increases in cancer incidence. We then describe general features of the stochastic
trajectories for reasonable parameter selection, and then apply the model to evolutionary cancer datasets.

S7.1 Evasion rates explain differential increases in early cancer incidence
We consider the relationship between early cancer incidence as an initial proof-of-principle of the relevance
of immune surveillance parameterized in our model. In reality, it is known that immune system parameters
vary temporally. We have shown previously that their variation is able fit well the AML age incidence
curve [1]. Here, the immune turnover parameter parameterized by ν isolates the effects of T-cell turnover and
detection efficiency rates from T-cell diversity. Since T-cell turnover is known to decline in early adulthood
with preserved diversity [7], we hypothesize that differences in cancer evasion rates are reflected in differential
increases in early age incidence. We assume that T-cell detection efficiency and turnover as well as the risk
of tumor initiation are comparable.

DC
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GF H

JI K

Figure S6: Cancer Incidence. Best-fit slope and intercept is obtained for early incidence data (from 0 to
37.5 years) for (A) AML; (B) Prostate; (C) CLL; (D) Breast; (E) Pancreatic; (F) Kidney; (G) Ovarian; (H)
Head and Neck; (I) Bladder; (J) Lung; (K) Melanoma.

Toward this end, we restrict our analysis to the age interval between 0 and 40 years to omit the effects of
significant declines in immune repertoire diversity. Our model would predict that subtype-specific differences
in growth rates would also contribute to this difference. In the absence of reliable data on in vivo cancer-
specific growth rates, we restrict our attention instead on evasion rates, using large patient repositories of
per-cell mutation rates as a representative measure of this evasion [6]. We calculate lines of best fit to early
cancer incidence data (obtained from cancerresearchuk.org)for a variety of cancer types (Fig. S6). Here,
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Figure S7: Cancer incidence and evasion rate. Rate of change in cancer early age incidence vs. evasion rate.
For each age incidence curve, linear regression is performed for incidence in a similar manner as in Fig. S6,
except that the regression input is restricted to values between minimal age at diagnosis and 40 years. The
slope of the corresponding incidence curves are then plotted as a function of the per-cell mutation rate for
each cancer type.

the positive slope parameters represent differential increases in each cancer type. Despite the dynamical
complexities relating tumor progression and observed incidence, the slope of early cancer incidence correlates
across many cancer types, both when applying linear regression at all ages between 0 and 40 (Fig. 4), and
assuming a lower bound for age incidence at the minimum age at diagnosis (Fig. S7). In reality, the
interplay between evasion (µ) growth (r), and detection (ν) rates are more complicated owing to cancer
subtype-specific infiltration and immune presentation patterns, in addition to the clone-dependent values
within a given tumor. and likely have a random component with each new clone and in turn define their
success at producing progeny via λ in the subsequent recognition cycle. We remark that a more complete
analysis would consider the distribution of values of µ, r, d that depend on particular driver clone. We find
that breast cancer is one extreme element within the studied group, perhaps owing to increased reporting as
a result of screening guidelines. Restricting our attention to TNBC tumors instead demonstrates statistically
significant agreement (Pearson’s correlation coefficient with hypothesis testing at significance level α = 0.05).

S7.2 General model features
Fig. S8 illustrates an example trajectory, with colors indicating clones which arise from the same period.
The first feature, cancer initiation, quantifies the likelihood that such a process would begin in the first
place. We consider this to be either a rare or common event relative to underlying cancer incidence, and
is independent of any model parameters. Clonotypic branching refers to the extent to which there is an
increase in the number of distinct clones at each period and is completely determined by the branching
parameter λ. Control of an evolving threat is the extent to which a threat stays in a state of non-escape and
non-elimination, and is represented by clonal trunk length. Large clearance probabilities qc result in longer
clonal trunk lengths. The degree of branching λ inversely affects clonal trunk length since, all else equal,
increases in λ augment the average number of clones available to escape during each period, thus shortening
the number of periods prior to escape. Ultimate threat elimination is characterized by transformations T
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Figure S8: Features of the general co-evolutionary dynamical framework. (a) Cancer initiation, (b) degree
of branching prior to escape, (c) level of control of the threat, (d) ultimate elimination, (e) ultimate escape,
(f) branching due to escape.

and T̃ , which are functions of branching and control. Escape likelihood is similarly characterized related to
branching and control through T̃ . The subsequent number of clones post-escape is approximated in Sec. S6.

The complete model affords significant flexibility in the allowable dynamical behavior. Below is a com-
prehensive characterization of all possibilities in the key determinants of this behavior and the resulting
effect on predicted incidence and clonal evolution.

• I. (a) rare, (b) λ ≤ 1, (c) qc low : Incidence determined strictly by arrival (a). Escape arrives quickly
after few cycles, and little to no branching observed.

• II. (a) rare, (b) λ ≤ 1, (c) qc high : Little to no branching. qc large and λ < 1 implies that extinction
dominates in the splitting probability of extinction vs escape, so that escape is rare. Together with (a)
rare, this outcome is ‘rare’2.

• III. (a) rare, (b) λ > 1, (c) qc low : Branching occurs early, shortening the clonal trunk of evolution.
Multiple escape events are likely, leading to multiple sub-clones detectable post-escape.

• IV. (a) rare, (b) λ > 1, (c) qc high : Possible extended evolution prior to absorbing state. Escape more
likely due to λ > 1. Net branching shortens the average number of cycles prior to escape. unless λ ∼ 1.

• V. (a) common, (b) λ ≤ 1, (c) qc low : Similar to I. but this time initiation occurs commonly, and in
the majority of cases, leads to cancer escape and cancer incidence (‘common’2).

• VI. (a) common, (b) λ ≤ 1, (c) qc high : Initiation common, but incidence is controlled by high immune
functioning. Conditional on escape, there is a long clonal trunk when λ ∼ 1.

• VII. (a) common, (b) λ > 1, (c) qc low : Similar to III, but everyone commonly gets tumor initiation
and subsequent disease, occurs more rapidly than V (‘common’2).

• VIII. (a) common, (b) λ > 1, (c) qc high : Initiation is common, but disease can be controlled by
high clearance probability. Shorter clonal trunk expected due to rapid expansion of clone numbers and
escape, assuming it occurs, happens earlier than in VI. supercritical λ also results in more detectable
sub-clones post-escape than in V . Larger clonal trunks are observed when λ ∼ 1.

Depictions of simulations involving combinations of branching parameter and control parameters are
depicted in Fig. S9.
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Figure S9: Typical stochastic trajectories. Representative trajectories for low branching, low control
(A,C,E,G); low branching, high control (B,D,F,H); high branching, low control (I); and high branching,
high control (J) (parameters chosen to generate reported branching parameters in adaptive recognitions
simulations).

S7.3 Parameter selection
Immediately, II, V, VII appear to be unsuitable for realistic levels of cancer incidence. Of the remaining
events where tumor initiation is rare, significant clonal evolution is not predicted in I or III, as evolution
post-escape is purely sub-clonal. We keep in mind the remaining behaviors (IV, VI, VIII) in comparing model
dynamics empirically observed cancer evolutionary data, and make an argument for VI and VIII (i.e. that
real data is consistent with tumor initiation being a relatively common event, with progression and eventual
escape the rare occurrence in a manner consistent with long periods of clonal evolution below detection size).
In this section we derive a relevant parameter selection for actual tumor behavior, and restrict our attention
to a reasonable behavior for tumor evolution.

S7.3.1 Detection size variability
In the deterministic case all populations are detected at size m0. The variability in detection size. m, for a
given clone in the adaptive case can be assessed by dividing the adaptive clone intensity in Eq. S72 by the
per-cell intensity λ0, giving
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m ≡ Λ/λ0, (S103)
so that

E [m] = ν +m0, Var (m) = ν. (S104)
If detection is size-limited, as in [1], then m0 = R/r for R lower detectable total growth rate of a foreign

threat. Without loss of generality, we take d ≡ 1 so that r = r/d, for 0 < r < 1. If threats of most
growth-rates are handled, then λ = λ0m0 ≤ 1 for a majority of growth rates r. Toward this end, we denote
extreme choices of growth rate by ε > 0 be small so that λ|r=ε,1−ε = 1. This implies that R may be written
as R = ε(1− ε)/µ. Additionally, the index of dispersion, D(m), is

D(m) =
Var (m)

E [m]
=

ν

ν +m0
=

µνr

µνr + ε(1− ε)
. (S105)

The dispersion is plotted as a function of immune parameter ν and growth-rate r and compared alongside
mean predicted detection sizes (Fig. S10). Our model predicts that the detection size of various clones is
highly variable for larger growth rates, compared to that of small growth rates, which have smaller relative
dispersion. The effect of impaired immunity is modeled by increasing ν, which also increases the level of
dispersion.

This assumption on relevant sneak-through windows gives

m0(r) = ε(1− ε)/µr, λ̃ = λ+ λ0ν =
µ

1− r

[
ε(1− ε)

µr
+ ν

]
. (S106)

A B

Figure S10: Detection size mean dispersion index. The detection size (A) mean, E [m], and (B) index of
dispersion, D(m), are plotted as a function of growth rate r and immune detection parameter ν (µ = 10−6,
ε = 10−5).

S7.3.2 Detection of large growth rate threats
Interesting threats are those which do not grow faster than the maximal immune killing rate d. In this case,
we recall that

λ0 = µ/(1− r), m0 = R/r, λ = λ0m0 (S107)
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We make the assumption that the background detection size of an extremely fast-growth threat, inde-
pendent of the adaptive parameter (i.e. via λ), is small (i.e. m0(r = 1) ≈ 1). This assumption implies that
R = ε(1− ε)/µ and imposes the following estimation of the sneak-through window ε:

m0|r=1 ≈ 1 =
ε(1− ε)

µ
. (S108)

Since ε ! 1, this gives ε ≈ µ for µ = 10−6. This subsequently implies that

m0|r=ε =
1− ε

µ
≈ 1/µ = 106, m0|r=1−ε ≈ ε/µ ≈ 1. (S109)

and
λ̃|r=ε = 1 +

µ

1− ε
ν ≈ 1 + µν = 1 + 10−6ν, λ̃|r=1−ε = 1 + µν/ε ≈ 1 + ν. (S110)

For an intermediate-growth threat (r = 1/2), we have

λ0|r=1/2 = 2µ = 2 ∗ 10−6, (S111)

and
λ̃|r=1/2 = 4µ+ 2µν. (S112)

S7.3.3 Common incidence, rare progression
More generally,

λ̃ = µ

(
1 + νr

r(1− r)

)
, (S113)

with first order condition
∂λ̃

∂r
=

(
µ

r2(1− r)2

)(
νr2 + 2r − 1

)
= 0, (S114)

ultimately giving a minimal r∗ > 0 of
r∗ =

√
1 + ν − 1

ν
, (S115)

with minima
λ̃(r∗) =

µν2
(√

1 + ν − 1
)2 ≥ µν. (S116)

Taken together, this implies that the host is most effective at minimizing the branching parameter at r∗
depending inversely on immune compromise parameter ν, and that in the deterministic case with no com-
promise (ν = 0), threats of intermediate growth rate r∗ = 1/2 are maximally cleared. Moreover, branching
for all values of ε ≤ r ≤ 1− ε is bounded below (at r = r() and above (at r = 1− ε) by

µν ≤ λ̃ ≤ 1 + ν. (S117)

Finally, since
∂λ̃

∂ν
= λ0 =

µ

1− r
, (S118)

we predict that the control of rapidly dividing threats is more sensitive to changes in adaptive immunity.
Lower bounds on branching also provide the following condition on immune compromise after which threats
of all growth rates are predicted to branch as ν > µ−1. This predicts that threats with larger mutational
rates have an easier time overcoming adaptive immunity as it becomes compromised, regardless of growth
rate.
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Together, we conclude that under normal adaptive immunity, λ ≤ 1 appears to be reasonable should
threats of a large variety of growth rates be containable, in support of hypotheses I, II, V, VI above.
Intersecting this with earlier remarks give us our working model of cancer evolution via scenario VI. From
this, we predict that the frequency of tumor initiation is significantly more common relative to ultimate
incidence, which is due to the low probability of escape and sub-critical branching that leads to ultimate
elimination in most cases. In the next section, we rely on available data to quantify its extent.

A B

Figure S11: Mean recognition cycles and Escape probabilities assuming rare initiation. (A) log10 mean
number of recognition cycles and (B) cancer escape probabilities as a function of qc and λ for deterministic
recognition evaluated using tie probabilities in Eq. S56.
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S7.4 Renal cancer evolution predicts common cancer initiation with rare
progression to disease

Recent innovation enabling the tracking of evolutionary trajectories in large patient datasets has provided
new opportunities to study early cancer initiation and progression that ultimately leads to disease. The
primary advantage of such studies related to our analysis is in their retrospective estimation of cancer ini-
tiation and progression. In the first case, early evolutionary data for clear cell renal cell cancer (ccRCC) is
analyzed from the TRACERx renal consortium [9]. The authors of this study find, perhaps surprisingly,
that the evolution of renal cancer is characterized by a prolonged state of little to no net growth (5-20 years)
sustained by populations below detection level (estimated to be on the order of hundreds of cells), eventually
followed by escape and ultimate diagnosis. We argue that this prolonged state can be explained by effective
co-evolution proposed above, and that the length of time in such a state has implications for the relative
rate of tumor initiation.

In the aforementioned study, sequencing was performed at an average depth of 64X on 95 biopsies from 33
patients and revealed an average of 1,193 in-frame deletions and 7,680 somatic substitutions per patient. We
assume that these changes correlate with any possible immune evasion, and that a small subset (0.1% to 1%)
actually represent immunologically-relevant evasion events, for which we expect somewhere between 8 to 80
events relevant to co-evolution. We next attempt to approximate this value from below using experimentally
estimated times to most recent common ancestor (MRCA), tm and ultimate detection, tM . We assume that
the population of the escaping clone at detection is X(tM ) = M ∼ 109. Similarly, X(tm) = m0 ∼ 102 based
on TRACERx estimates. If no co-evolution occurs and the population undergoes exponential expansion
then the timing of escape depends linearly on the logarithmic population, so that 9tm/2 = tM , and the
intervening time between MRCA and escape, ∆t = tM − tm = 7tm/2. If instead n cycles occur prior to
escape and we assume that progeny occur approximately at the peak of population size, then the intervening
time is instead ∆t = tM − ntm. In both cases, escape takes the same amount of time so that ∆t = 7tm/2
giving

7tm/2 = tM − ntm. (S119)
Since tM and ntm are measured, we can estimate the number of recognition cycles, n, by

n =
7ntm

2(tM − ntm)
. (S120)

Using the 31 available times in the TRACERx renal consortium, we estimate an average of n = 26.6 recogni-
tion cycles in renal cancer. This together with the mutational signature suggests 0.3% of observed mutational
events correspond with relevant immune evasion. We use a modified version of Eq. S38 conditioned on ulti-
mate escape (E∞), given by

P(Ẽn | E∞) =
(
Tn−11− Tn1

)
/(1− p∗), (S121)

to calculate cycle number N conditional mean and variance,

E [N | E∞] =
∞∑

n=0

nP(Ẽn | E∞) (S122)

Var (N | E∞) =
∞∑

n=0

n2P(Ẽn | E∞)−
( ∞∑

n=0

nP(Ẽn | E∞)

)2

. (S123)

From this, we identify regions of parameter space where the observed number of recognition cycles occurs
(Fig. S11). It is of no surprise that the mean number of recognition cycles becomes large when the branching
parameter λ is concentrated at criticality (Fig. S11A). We note that super-critical branching is expected not
only to decrease mean recognition cycle number, but also progression period since control of a branching
threat on average requires the occurrence of more evasion events in the same time period as a non-branching
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threat.

With this in mind, we focus our analysis to 0 < qc,λ < 1. Relevant average recognition cycle number is
generally predicted for high clearance probability (qc ≥ 0.9) whenever λ > 0.9. We note that cancer incidence
requires tumor escape following an initiation event (Fig. S8). While initiation necessarily cannot occur at a
frequency less than cancer incidence, its rate may exceed actual incidence. In one extreme case, initiation
might be a rare event so that the majority of incidence is explained by rare initiation that invariably leads to
escape and cancer diagnosis. In this case, referred to as ‘rare initiation, common progression,’ co-evolution
would have a weak or non-existent effect on overall incidence as escape probabilities would approach one
so that progression nearly always leads to disease. On the other hand, under ‘common initiation, rare pro-
gression,’ originating cancer risks arrive at a significantly higher frequency than measured incidence. In this
case, the model predicts co-evolution to be a substantial contributor to observed incidence as low escape
probabilities filters many frequent initiation events.

Mean recognition cycles are plotted as a function of 1− qc and 1− λ with estimated mean cycle number
highlighted (Fig. 5A). Relevant clearance probabilities are predicted to be high, implying that the model pre-
dicts effective interrogation of and recognition against many threats. From this, the parameter selection that
overlaps with maximal observed escape probability suggests that renal cancer initiation is 18 times as likely
as observed incidence (Fig. 5C), in support of the ‘common initiation, rare progression’ hypothesis. The
above theory provides a method of assessing the predicted balance between initiation and co-evolutionary
escape as contributors to overall incidence, given cancer incidence data and estimates of the progression
period. In summary, cancers with large progression periods exist close to criticality (λ ≤ 1) and have large
clearance probabilities, which results in concomitant increases in recognition period and cycle number. Based
on the above theory, this case is predicted to have random and frequent arrivals of initiating clones relative
to observed incidence, with co-evolution providing an important contribution to incidence by filtering many
of these cases with a low escape probability. We remark that estimates of mean cycle number are most
sensitive to the assumed minimal detection window at which threats are eliminated. We assumed m0 = 100
in order to match TRACERx estimates. Repeating the analysis for m0 = 1, 000 generates a mean recog-
nition cycle number of n = 15.2. In conclusion, the extent of common initiation as a multiple of observed
incidence is predicted to vary directly with progression period (i.e. mean number of recognition cycles).
Examples of clonal and total population trajectories for recognition followed by ultimate control or escape
is given in Fig. 5B,D under deterministic recognition assuming initiation is 18 times as frequent as incidence.

We partition the data utilized in Fig. 5A.C into two groups: Evolution dominated by linear evolution or
branched evolution. TRACERx samples were assigned to the former group in absence of substantial branched
evolution prior to escape (determined by having the difference in arrival time of MRCA to escape less than 10
years), giving 13 total samples dominated by linear evolution and 19 dominated by branching. The previous
analysis was applied similarly to both of these groups in order to determine the expected mean cycle number
(Fig. S12A) and frequency of escape relative to initiation (Fig. S12B). We find that branching evolution
and early, likely escape are concomitant, while sustained linear evolution indicates sustained co-evolution
with common incidence, rare progression. Branching evolution was found to have 5± 2 (µ± σ) recognition
cycles, with initiation predicted to occur five times as frequently as observed incidence. In contrast, linear
evolution was characterized by 57 ± 35 recognition cycles, with initiation 41 times as likely as observed
incidence. In comparing the disease severity of each of these groups based on histological grade, we find
non-statistically significant increase in disease severity corresponding with evolution dominated by branched
evolution. This approach demonstrates the model’s ability to assess cancer evolutionary paths with respect
to disease severity and, ultimately, treatment prognosis. Future analysis of large-sample studies would help
to better characterize this relationship.
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Figure S12: Cycle number and cancer frequency for linear vs branched evolution. (A) Estimated mean cycle
number ± 1 standard deviation (shaded region) is plotted for samples with predominant linear and branched
evolution as a function of clearance probability and branching parameter; (B) Maximal escape probabilities
are calculated assuming the estimated mean cycle number.

S7.5 Smoking status correlated with predicted immune surveillance
impairment in early-stage non-small cell lung cancer

In a similar way as above, the tracking of landmark evolutionary events was performed for non-small cell
lung cancer (NSCLC) [3]. Whole exome sequencing was performed on 327 tumor regions from 100 patients
with NSCLC and no prior treatment. The authors found significant correlation between the number of
early mutations and tobacco exposure, and identified mutations induced by tobacco, which consequently
had direct influence on the clonal trunk length (i.e. the number of mutations in the MRCA). Last of all,
the authors find a long period of what appears to be tumor latency in the evolution of lung adenocarcinoma
before clinical presentation, in a similar manner as in ccRCCC.

This data, which provides subtype-specific mean and variance estimates of clonal trunk length, allows
us to use our statistical framework to predict the differences in immune relevant model parameters that
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Table S1: TRACERx Estimated NSCLC Mutation Burden
Subcategory Clonal mutations, Ω

Mean, µΩ Variance, σ2
Ω

All LCA (n = 100) 489 2.26 · 105
Smoker (n = 48) 526 2.23 · 105

Nonsmoker (n = 14) 255 1.91 · 105
Adenocarcinoma (n = 61) 447 2.86 · 105

Squamous-cell carcinoma (n = 32) 573 1.40 · 105

distinguish each disease. As in the ccRCC case, we assume that a small fraction, α ! 1, of the total
mutational signature is immunologically relevant. If Ω is the total number of observed mutations with
µΩ = E [Ω] and σ2

Ω = Var (Ω), then there is a quadratic relationship between the mean and variance fraction
of relevant mutations, αΩ parameterized by α, namely,

E [αΩ] = µΩα (S124)

and

Var (αΩ) = σ2
Ωα

2. (S125)

Plots of the mean-variance frontier are given for all sample subtypes (Fig. 6). For normal, deterministic
recognition, there is an upper limit on the allowable variance-to-mean ratio observed across all possible
parameter choices. The allowable region in the adaptive case overlaps nearly entirely with that of the
deterministic case, but also permits lower values of variance relative to the mean. We refer to the non-
overlap as the region of immune impairment, since, all else equal, these values are only possible with the
addition of a strictly positive adaptive parameter, thus increasing recognition above the lower allowable
detection limit m0. It is in general difficult to observe increases in the variance-to-mean ratio above those
observed in the deterministic case. We found that adding an assumption of temporal immune enhancement
over time, where the clearance probability may increase toward an upper limit (qc,∞ = 0.90 in our case)
according to

qc,n+1 = max{qc,∞, qc,n + (pc,n − qc,∞/25)}, (S126)
generates behavior that overlaps with the non-nonsmoker and lung adenocarcinoma cases. The non-overlap
region with high relative variance is likely due to trajectories with initially low clearance probabilites that
increase to the upper limit over time. Our results suggest that in addition to the larger mutational burden
of smokers’ LCA, non-smokers benefit from being able to control initiating cancer threats with an immune
system which may augment its anti-tumor ability slowly over time. This is in contrast to smokers and squa-
mous cell carcinoma, both having mean-variance frontiers more consistent with systems having appreciable
compromises in their immune ability through reduced detection rates resulting from larger minimal detection
sizes.
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