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Abstract

Metastasis is a significant contributor to morbidity and mor-
tality for many cancer patients and remains a major obstacle for
effective treatment. In many tissue types, metastasis is fueled by
the epithelial-to-mesenchymal transition (EMT)—adynamic pro-
cess characterized by phenotypic and morphologic changes con-
comitant with increased migratory and invasive potential. Recent
experimental and theoretical evidence suggests that cells can be
stably halted en route to EMT in a hybrid E/M phenotype. Cells in
this phenotype tend to move collectively, forming clusters of
circulating tumor cells that are key tumor-initiating agents. Here,
we developed an inferentialmodel built on the gene expression of
multiple cancer subtypes to devise an EMT metric that charac-
terizes the degree to which a given cell line exhibits hybrid E/M

features. Our model identified drivers and fine-tuners of
epithelial–mesenchymal plasticity and recapitulated the behavior
observed in multiple in vitro experiments across cancer types. We
also predicted and experimentally validated the hybrid E/M status
of certain cancer cell lines, includingDU145 andA549. Finally,we
demonstrated the relevance of predicted EMT scores to patient
survival and observed that the role of the hybrid E/M phenotype
in characterizing tumor aggressiveness is tissue and subtype
specific. Our algorithm is a promising tool to quantify the EMT
spectrum, to investigate the correlation of EMT score with cancer
treatment response and survival, and to provide an important
metric for systematic clinical risk stratification and treatment.
Cancer Res; 77(22); 6415–28. !2017 AACR.

Introduction
Epithelial-to-mesenchymal transition (EMT) is a critical phe-

nomenon during tumor progression that can drive metastasis,
tumor initiation potential, resistance to anoikis, refractory
response to chemotherapy, and immune system evasion
(1–3). Accumulating evidence in cell lines, primary tumors,
mouse models, and circulating tumor cells (CTC) across mul-
tiple tumor types has indicated that EMT is not an all-or-none
process, but rather that cells can exhibit a mix of epithelial
and mesenchymal traits such as (i) coexpression of epithelial
(CDH1, EPCAM) and mesenchymal (VIM, CDH2, ZEB1,
SNAI2) markers, and (ii) collective cell migration by giving
rise to clusters of CTCs (1, 4–7). The enhanced metastatic
potential of these clusters as compared with that of individually
migrating ones, a poor prognosis associated with coexpression
of epithelial and mesenchymal markers instead of solely mes-
enchymal markers, and a predominance of such hybrid
epithelial/mesenchymal (E/M) cells in highly aggressive can-
cers such as melanomas and triple-negative breast cancer
(TNBC) strongly argue for a hybrid E/M phenotype to be
construed as a hallmark of cancer aggressiveness (1, 5–10).

Despite its paramount importance in driving tumor progres-
sion, a hybrid E/M phenotype remains poorly characterized,
largely due to a lack of quantitative gene expression data at
different time points during EMT or its reverse mesenchymal-
to-epithelial transition (MET). Moreover, the hybrid E/M pheno-
type has been tacitly assumed to be metastable or transient (11).
Recent studies, however, have challenged this assumption by
demonstrating that a hybrid E/M phenotype can be stably main-
tained in vitro at a single-cell level, especially under the influence of
factors such as GRHL2 andOVOL2 that contribute to the stability
of a hybrid E/M phenotype (12–14). These factors are referred
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Major Findings
We develop an iterative method that ranks candidate gene

products based on their ability to resolve NCI-60 cohort
samples with regard to their respective EMT status and con-
struct a metric that quantifies the EMT spectrum. We validate
model predictions by correctly recapitulating multiple in vitro
experiments containing samples with well-established EMT
status. We then demonstrate the utility of our metric by
identifying certain hybrid E/M cell lines, followed by exper-
imental validation via immunofluorescence and single-cell
analysis. Finally, we demonstrate the relevance of EMT-state
predictions to cancer progression across multiple cancer types
by comparing differences in patient survival among the three
predicted categories (E, E/M, M).
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Quick Guide to Equations and Assumptions

Equations
The approach outlined inMaterials andMethods effectively creates many statistical models based on combinations of predictors

selected from a large pool of EMT-relevant genes. Thesemodels are all created using ordinal multinomial logistic regression (MLR).
MLR allows output predictions to categorize more than two (in this case three) distinct groups. Ordinal regression is employed to
indicate the order structure between groups, whereby the hybrid E/M state is appropriately placed intermediary to E and M. Each
model,m,maybe represented either by its regression coefficients,b ¼ ða1; a2;b1;b2Þ, or by its collectionof output classifiers, p̂ðmÞ. In

this way, the output of model m for sample s is indicated by fp̂ðmÞ
s;1 ; p̂ðmÞ

s;2 g, where p̂
ðmÞ
s;k is model m's best assessment that sample

s belongs to one of the groups from 1 to k (k ranges from 1 to 2, and p̂
ðmÞ
s;3 ¼ 1). Predictions from each model may be compared

with known observations in the training set to produce a deviance, D. The best fit model may be identified by selecting the model
with maximal log-likelihood. This is equivalent to minimizing D, given by

D mð Þ ¼ 2
XN

j¼1

X3

k¼1

Yj;k log Yj;k $ log p̂ mð Þ
j;k

! "
ðAÞ

Here, N represents the number of samples in the training set ð%60Þ, j the index for each sample, k the index for each of the three

categories, Yj;k the observable categories, p̂ðmÞ
j;k the fitted, cumulative distribution value for the jth observation, and log Yj;k the

maximal attainable log-likelihood value.

By minimizing over all combinations of predictors, we may generate a model that best classifies a given training set into 1 of 3
ordered (E <E=M <M) categories using two predictors. The relationship between regression coefficients ða1; a2;b1;b2Þ is given by

log
p̂j;k

1$ p̂j;k

# $
¼ ak $ b1Xj;1 þ b2Xj;2

% &
; ðBÞ

defined for k ¼ 1; 2, where Xj;1 and Xj;2 represent the jth sample values for predictors 1 and 2, respectively. In this context, the
cumulative probabilities may be given for each category k (belonging to one of fE; E=M; Mg) by:

p̂j;k ¼ P Yj ' k
% &

¼

ea1$ b1Xj;1þb2Xj;2ð Þ

1þ ea1$ b1Xj;1þb2Xj;2ð Þ ; k ¼ 1;

ea2$ b1Xj;1þb2Xj;2ð Þ

1þ ea2$ b1Xj;1þb2Xj;2ð Þ ; k ¼ 2;

1; k ¼ 3:

8
>>>>>>><

>>>>>>>:

ðCÞ

This provides an explicit representation for the categorical probabilities as:

P Yj ¼ n
% &

¼ ea2$ b1Xj;1þb2Xj;2ð Þ

1þ ea2$ b1Xj;1þb2Xj;2ð Þ $

ea1$ b1Xj;1þb2Xj;2ð Þ

1þ ea1$ b1Xj;1þb2Xj;2ð Þ ; n ¼ E;

ea1$ b1Xj;1þb2Xj;2ð Þ

1þ ea1$ b1Xj;1þb2Xj;2ð Þ ; n ¼ E=M;

1$ ea2$ b1Xj;1þb2Xj;2ð Þ

1þ ea2$ b1Xj;1þb2Xj;2ð Þ ; n ¼ M:

8
>>>>>>>>>><

>>>>>>>>>>:

ðDÞ

As stated above, ordinal MLR places order structure on categories consistent with the belief that the hybrid E=M cells fall in a region
between E andM. Using this characterization, we propose the EMT metric, m, defined in relation to the probability of obtaining a
hybrid, PH (Eq. E). PH is calculated by Eq. Dwith n ¼ E=M (PE with n ¼ E, PM with n ¼ M), andmmay take values in ½0; 2), with the
value m ¼ 0 interpreted as a purely E signature, m ¼ 2 a purely M signature, and m ¼ 1 a maximally hybrid E/M signature.

m Yið Þ ¼
PH; PE >PM;

2$ PH; PE <PM;
1; PE ¼ PM:

8
<

: ðEÞ

In working with large datasets, we may characterize the distribution of EMT scores for a given cancer subtype. This is graphically
represented by plotting a histogram of the sample partitioned across [0, 2] into 20 equally-spaced bins, from which an empirical
probability density can be approximated by spline interpolation of the histogram.
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to as "phenotypic stability factors" (PSF), and their elevated
expression, indicative of a stable hybrid E/M state, can be asso-
ciated with worse patient survival (12).

Here, we devise an iterative statistical model built upon the
gene expression profiles from multiple cancer subtypes that can
quantitatively predict where a given sample lies on the EMT
spectrum. The model can categorize the NCI-60 cohort of cell
lines into epithelial, mesenchymal, and hybrid E/M phenotypes
with high specificity, sensitivity, and accuracy, while only using a
small set of predictors. Furthermore, it validates the relevance of
PSFs in stabilizing the hybrid E/M phenotype, captures the dif-
ferent EMT score for various conditions such as EMT induction
and multiple isogenic subpopulations, and can correlate EMT
status with clinical outcome across different tumor types. This
statistical model illustrates common molecular features associat-
ed with EMT acrossmultiple contexts and tissue types, andwill be
crucial to further our understanding of a hybrid E/Mphenotype in
tumor progression.

Materials and Methods
To develop a quantification of EMT that incorporates the E/M

phenotype, iterativemultinomial logistic regression (MLR) in two
dimensions is applied to theNCI-60 training set to find the pair of
predictors (i.e., gene products) best able to resolve each pheno-
type. The output of themodel ismodified to create an EMTmetric
bywhich additional samplesmay be characterized (Eqs. D and E).
All datasets were obtained from the National Center for Biotech-
nology InformationGene ExpressionOnmibus (GEO) portal and
identified by their GEO ID, unless otherwise noted. Model
construction and predictions were performed using MATLab
R2015b, along with its Curve Fitting Toolbox and Statistics and
Machine Learning Toolbox. Additional explanations, support-
ing information for the model, and a complete list of exper-
imental procedures may be found in Quick Guide To Equations
and Assumptions section as well as Supplementary Information
and Supplementary Data.

Training set classification
We primarily require that the model represent a generalized

characterization of EMT, which can then be applied to a number
of tissue types. Consequently, the training set must contain a
broad collection of cancer subtypes. The NCI-60 cohort of cell
lines (GSE5846) is selected as the training set because of its diverse
collection of cancer types. In addition, previous empirical inves-
tigations using VIM and CDH1 protein markers have categorized
this data into E,M, and E/M categories (15), which are used as the
observable categories.

Feature selection
A list of EMT-relevant candidate genes is compiled from the

literature and employed as the space of possible EMT predictors,
significantly reducing the high dimensional input space of all
possible gene products (Supplementary Data; refs. 16–20). This
restriction helps to mitigate overfitting by partially eliminating
sources of variability extraneous to the problem at hand. A list of
these features, along with simple combinations [for example, the
ratio of two canonical epithelial and mesenchymal markers such
as E-cadherin and vimentin—CDH1/VIM, or that of a canonical
mesenchymal gene and a typical "PSF" for a hybrid E/M pheno-
type (12)—GRHL2/VIM] for a subset of these genes are utilized as
the set of candidate predictors in the training of NCI-60 data (see
Supplementary Data). We limit our extension of ratios to a subset
as finding the top two predictors out of relevant transcripts and
their ratios would be computationally infeasible. Overfitting may
also occur by incorporating a large number of predictors, thereby
reducing model predictive power (21, 22). This risk was mini-
mized by only considering up to two candidate predictors in
combination. Although it is computationally not feasible to find
the best three predictors in combination, we characterize the
change in sensitivity and specificity when adding the next-best
predictor individually to the top 50 predictor pairs.

Selected candidate predictors are ranked by ordering the list of
all combinations of candidate genes according to their ability tofit
the training set (Table 1). Better candidate predictor combinations
are characterized by lower deviance (D) scores, which are calcu-
lated via MATLab's built-in "mnrfit.m" function (Eq. A). Mini-
mizingD corresponds to a higher maximum likelihood estimate,
which gives a better overall fit to the training data. The best
predictor combination is obtained by selecting candidate predic-
tors with the lowest value of D. Although only two predictors are
ultimately used for sample classification, the procedure also
orders candidate predictors based on their individual ability to
resolve EMT.

Model construction
Themodel is constructed using supervisedmachine learning on

the NCI-60 training data. MLR is applied to each pair of potential
predictors. MLR is employed as it is an effective tool in handling
categorical data with a continuous input (e.g., gene expression
data). An explicit description of the intermediate state (as
opposed to a description relative to the distance between E and
M extremes) was one of the main advantages of our approach.
Ordinal regression is assumed, with E<E/M<M, as the E/M phe-
notype is known to share features of both E and M and it seems
reasonable to suppose that E/M cells exist in a state that is
intermediate to both E and M. To ensure that the ultimate model

Assumptions
Themodel assumes that themajor features of EMTmay be characterized in a general sense by gene expression signatures. Ordinal

logistic regression requires that an order structure exist among the categories to be predicted. In this case, E=M is intermediate to E
andM. In addition, themodel assumes a proportional response that is the same for each categorywith regard to changes in predictor
levels. Model normalization assumes that systematic differences across experimental setups and gene expression platforms can be
captured by comparing the relative levels of a small collection ð% 20) of gene products that themodel predicts to be least correlated
with respect to EMT. Finally, our extension of the model to primary tissue samples assumes that differences other than those
accounted for in the normalization step between the training and test sets are minimal.

Partial EMT Gene Expression Scoring Metric
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indeed characterizes the training data, deviances are calculated for
106 similar statistical models with two predictors randomly
chosen out of the same EMT-relevant feature selection pool.

Cross-validation
The result of applying MLR on the predictor combination, (X1,

X2), is a set of regression coefficients, bi, which can be used to
predict the EMT status of unknown samples (Eqs. B andC). Leave-
one-out analysis was employed to characterize the predictive
capability of the model and ensure that the algorithm was not
significantly overfitting the training data. In this step, statistical
regression is constructed identically as before, but this time using
all but one sample in the NCI-60 training set. The regression is
then applied to predict the category of the withheld sample.
Sensitivities and specificities are estimated by repeating this
procedure, withholding a different sample each time.

Normalization
Systematic differences in expression values as a result of dif-

ferent experiments and cross-platform analysis lead to variability
in gene expression that may significantly affect predictions using
the model trained on NCI-60. Normalization is performed prior
to each analysis tomake amore appropriate comparison between
the model regression coefficients and new samples. Toward this
end, MLR is performed on the training set as before, this time
using individual genes only. This is iterated for every gene product
available, now amuch larger collection of genes than the set used
for model construction. The output of this step is a list of gene
products based on their individual ability to resolve {E, E/M, M}
phenotypes in training data. This list is sorted to prioritize genes
least capable of resolving categories. The top genes are thosemost
agnostic to EMT status and play a similar role in our analysis to
housekeeping genes used for establishing baseline expression
profiles. To prevent over reliance on a single normalizer, the 20
lowest-ranked gene products that show nonsaturated signals in
the training set are selected as normalizers. Once selected, expres-
sion values for each of these genes in the training set are averaged
together. Similarly, the expression value for the same genes are
averaged in the test (NCI-60) set. The systematic difference in
average expression of these normalizers is applied uniformly to all
genes in the test set as follows: Average gene expression values for
this collection create a background expression profile for both the
training set (Etrain) and the test set (Etest). The net differences in
background expression, Etest $ Etrain, is subtracted from each
expression value in the test set for fair predictions (for example,
if there is no difference in background expression, then no net
correction is required). As stated above, the role of these genes is
similar to utilizing the housekeeping genes as relativemeasures of
consistent expression. Here, however, these gene products have
been shown to remain consistent regardless of EMT status.

Occasionally, gene signatures exist that fall far outside the
domain of reasonable expression levels post-normalization. The
model can still assign an EMT score to such samples, but the
validity of such predictions becomes questionable. To filter
anomalous data, samples designated as outliers are withheld
from EMT metric assignment. Outliers are samples that fall
outside of range (greater than 5-fold on either axis, when com-
pared with the total range of NCI-60 data) not only for the top
predictor (X1, X2), but also for the next two top predictors as well.

This is a generous range relative to allowable maximum and
minimum fold values seen across all training set samples.

EMT metric
The mRNA expression values (log2-normalized) for the pre-

dictors identified in the feature selection step are used as input to
themodel. Theoutput for each sample is anordered triple, (PE, PH,
PM), thatmay be interpreted as the probability of falling into each
phenotype. Categorical predictions are made by binning samples
based on the type with maximal probability. To provide quanti-
tative estimates of EMT, samples are given a score,m, ranging from
0 (pure E) to 2 (pure M), with a score of 1 indicating a maximal
hybrid E/M phenotype (Eq. 5). In particular, 0 ' m <0:5 corre-
sponds to an epithelial prediction, 0:5 ' m ' 1:5 to a hybrid E/M
prediction, and 1:5<m ' 2 to a mesenchymal prediction.

Cell line validation and prediction
Gene expression profiles of EMT-relevant cell lines and exper-

imental treatments are analyzed to evaluate the consistency
between the model output and established empirical observa-
tions. In each of these cases, the EMT score, m, is used in predic-
tions. The predictive algorithm was applied to samples with
previously reported EMT status to compare EMT categorization
with known results. Additional predictionsweremade ondatasets
with unknown EMT state. Finally, the model was applied to
large sample The Cancer Genome Atlas (TCGA) datasets with
available gene expression signatures to provide a distribution for
the extent of EMT in multiple cancer subtypes. The results were
normalized to represent empirical probability density functions,
and the relevant histograms were smoothed using cubic spline
interpolation.

Survival analysis
EMT scores are generated for various patient primary tumor

samples containing both gene expression and survival metrics.
Observed survival distributions are graphically displayed for all
three categories using Kaplan–Meier plots, and significant differ-
ences in survival metrics among each category were pairwise
assessed using the log-rank test at significance level a ¼ 0:05.

Cell lines and culture conditions
All cell lines were obtained from the Duke University Cell

Culture Facility Shared Resource in 2017, which regularly per-
forms cell line authentication by short tandem repeat typing. Cells
were cultured in DMEM supplemented with 10% FBS and 1%
penicillin-streptomycin and incubated at 37*C with 5% CO2.

RNA extraction, reverse transcription, and qPCR
Total RNA was isolated from cultured cells plated in 24-well

format at a density of 50,000 cells/well using the Zymo Quick
RNAMiniPrep kit. Reverse transcription reactionswere comprised
of 250–500 ng of total RNA, 200 ng of random hexamer primers,
1+ IMPROMII reverse transcriptase buffer, 10mol/L dNTPs, 3.75
mmol/L MgCl2, 0.1 L RNasin, and 1 L of IMPROMII reverse
transcriptase in a total volume of 20 L. Following reverse tran-
scription, cDNAs were diluted 1:5 with nuclease-free H2O, and
qPCRs were prepared using 2 L of diluted cDNA, 5 L of SYBR
MasterMix (Kapa Biosystems), and 60 nmol/L of each primer in a
10:1 reaction volume. All qPCRs were performed in a ViiA-7 Real-
Time PCR System (Applied Biosystems). Primer sequences are
listed in Supplementary Data. All experiments were performed in
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triplicate and repeated on separate days. Data were graphed in
Microsoft Excel and analyzed in JMP Pro 13 using analysis of
variance with Tukey post hoc correction. Any P <0:05 was consid-
ered statistically significant.

Western blotting and immunofluorescence staining
To prepare cells for Western blots, cells were plated at 3 + 105

cells/well in 6-well format. The next day, cells were lysed in ice-
cold 1+ radio-immunoprecipitation assay buffer supplemented
with 1+ Halt Protease and Phosphatase Inhibitor Cocktail
(Thermo Fisher Scientific). Cells were incubated for 15 minutes
on a rocking platform at 4*C, and lysates were clarified by
centrifugation at high speed in a benchtop centrifuge at 4*C. A
total of 10 g from each lysatewas boiled in 1+ SDS loading buffer,
and proteinswere separated in 4%–15%MiniPROTEANTGXPre-
cast Gels (Bio-Rad) at 200V. Subsequent to transfer onto nitro-
cellulose,membraneswere blocked in StartingBlock PBS blocking
buffer for 1 hour at room temperature on a rocking platform,
incubated overnight in the presence of primary antibodies diluted
in StartingBlock PBS buffer, washed two times for 5 minutes each
with PBS, incubated 1 hour at room temperature in a 1:20,000
dilution of LI-COR anti-mouse 800 and LI-COR anti-rabbit 680
diluted in StartingBlock PBS buffer, washed two times for 5
minutes each with PBS, and imaged using the LI-COR Odyssey
imaging system. For immunofluorescence staining, cells were
plated at 5 + 104 cells/well in 24-well format and allowed to
grow for 48 hours prior to fixing to allow reestablishment of
E-cadherin at cell membranes. Cells were then fixed in 4%
paraformaldehyde for 15 minutes, permeabilized in PBSþ0.2%
Triton X-100 for 30 minutes at room temperature, blocked for 30
minutes in 5%BSA in PBS at room temperature, and incubated in
the presence of a 1:1,000 dilution of anti-vimentin primary
antibody diluted in 5% BSA in PBS overnight at 4*C. The next
day, wells werewashedwith PBS, and incubated in the presence of
a 1:2,000 dilution of anti-mouse AlexaFluor 488 secondary anti-
body and 1:2,000 dilution of Hoechst dye for one hour at room
temperature in the dark. Next, cells were washed in PBS and
incubated with 1 g of anti-E-cadherin antibody conjugated to
AlexaFluor 647 anti-mouse IgG2a diluted in 5% BSA in PBS for 1
hour at room temperature in the dark. Wells were washed in PBS,
and fluorescence images were captured using an Olympus IX 71
epifluorescence microscope with a DP70 digital camera and
processed with CellSens software (Olympus). The following
antibodies and dilutions were used: mouse anti-E-cadherin (BD
Biosciences; catalog no. 610181), mouse anti-vimentin (ABD
Serotec; catalog no. MCA862), anti-Zeb1 (Santa Cruz Biotech-
nology; catalog no. sc-25388), and rabbit anti-GAPDH (Santa
Cruz Biotechnology; catalog no. sc-25778).

ImageStream and flow cytometry analysis
Cell lines were analyzed by ImageStream and flow cytometry at

theDukeCancer Institute FlowCytometry Shared Resource.MCF-
7 and 143B cells were used as controls to create a compensation
matrix for the ImageStream analysis. The following antibodies
were used: mouse IgG2a isotype control antibody (Life Technol-
ogies; catalog no. MG2A00), mouse IgG1 isotype control anti-
body (Life Technologies; catalog no. MG100), Zenon AlexaFluor
488 mouse IgG1 labeling kit (Thermo Scientific; catalog
#Z25002), Zenon Alexa Fluor 647 mouse IgG1 labeling kit
(Thermo Scientific; catalog no. Z25108), mouse anti-E-cadherin

(BD Biosciences; catalog no. 610181), and mouse anti-vimentin
(ABD Serotec; catalog no. MCA862).

Results
The model identifies both the drivers and fine-tuners of
epithelial plasticity

The output of this data-driven approach results in a model,
which, when supplied with an appropriate training set and list of
relevant predictor genes, generates predictions of the hybrid E/M
phenotype for individual cell lines and patient samples by iden-
tifying a subset of predictors that can best fit the NCI-60 training
set (Fig. 1). NCI-60 cell lines have previously been categorized as
epithelial, mesenchymal, or hybrid E/M based on the ratio of
protein levels of CDH1/VIM (15). Ourmodel calculates howwell
each two-set combination of roughly 480 predictors (461 genes,
22 ratios of two genes; see Supplementary Data) can fit the
training set.

The top 5% of candidate predictors that are best able to
individually resolve the training set classification groups into E,
hybrid E/M, and M represent the ability of individual genes to
characterize EMT (Table 1). Not surprisingly, this list contains
canonical epithelial and mesenchymal markers such as CDH1
(E-cadherin) and VIM (vimentin) respectively. Importantly, it
also contains PSFs—the factors that can stabilize a hybrid E/M
phenotype by acting as molecular brakes, thereby preventing
them from undergoing a full EMT, such as GRHL2, OVOL1, and
OVOL2 (Table 1; refs. 12, 13, 23). Overexpression of one ormore
of these PSFs can drive a MET, whereas their knockdown can
induce a full EMT as observed in breast and prostate cancer cells
(12, 24, 25). Similar observations have been reported for another
element in this list, Claudin 7 (CLDN7), a crucial component of
tight junctions, thereby illustrating the ability of the statistical
model to identify the drivers as well as fine-tuners of epithelial
plasticity (26).

Another top candidate listed is the vesicle protein Rab25, a
member of Rab11 family that regulates E-cadherin turnover rate
andwhose levels aremodulated byGRHL2 aswell as ZEB1—a key
transcription factor that drives EMT (25, 27). Furthermore, CDH3
(P-cadherin), a proposed marker of hybrid E/M phenotype (28),
also appears in the list of top 5%EMT-relevant genes (Table 1). An
identical analysis ranked in an opposite manner on the entire
NCI-60 transcriptome reveals gene products least correlated with
EMT state, the results of which bear no resemblance to known
EMT pathways (Table 2).

Model feature selection is determined by the top pair of candi-
date predictors that can best resolve E, hybrid E/M, and M pheno-
types, and results in the identification of CLDN7 (X1) with VIM/
CDH1 (X2) (Table 3). The best-fit model we ultimately utilized is
completely described by b ¼ ½$7:87; 0:0413; 1:36;$1:96) (see
Eq.B).However, all top10combinationsfit trainingdatawithnear-
equal ability (Table 3). The frequent presence of PSFs such as
OVOL1,OVOL2, and/orGRHL2 in this list of top 10 two-predictor
combinations further reinforces our confidence in the ability of the
model to resolve samples into three categories: E, hybrid E/M, and
M. The top pair, CLDN7 and VIM/CDH1, performs well with
respect to making leave-one-out predictions, which suggests that
the risk of model over-fitting is minimal (Table 4). On the other
hand, this top pair performs significantly better than only VIM/
CDH1, clearly illustrating the role of CLDN7 in resolving these
three phenotypes (see Supplementary Data).
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Model sensitivity and specificity shows consistent perfor-
mance with one exception—sensitivity for the hybrid E/M
phenotype. This exception is a manifestation of lower resolu-
tion (more overlap) between E/M and M groups relative to that
between E and E/M groups in the available training data (Fig.
2B). We expect that the variability in E/M and M groups could
be further resolved with additional samples (currently 11 E/M,
11 E, and 37 M samples in the NCI-60 cohort, as categorized on
the basis of the ratio of protein levels of CDH1 and VIM;
ref. 15).

The deviance, D (Equation 1), of 106 randomly constructed
models from theEMT-relevant feature selectionpoolwas found to
be D ¼ 90:54 , 14:74. The deviance of the best predictor
combination,D ¼ 26:78 falls well outside this range, indicating
that significant improvements in describing the data can bemade
by applying our feature selection approach even when compared
with the output generated by an average, EMT-relevant pair of
predictors (Supplementary Table S1A). Finally, the addition of

another predictor to the top 50 two-predictor combinations does
not result in significant changes in leave-one-out sensitivity and
specificity (Supplementary Table S1B). This observation does not
rule out the possibility that a new three-predictor combination
may outperform the best two-predictor combination. However,
given our computational limitations and reservations for model
overfitting, we are satisfied with using the two most relevant
predictors in combination to quantify EMT.

Normalization with respect to EMT-independent gene
signatures accounts for tissue-specific differences

The top two-predictor (CLDN7, VIM/CDH1) model can be
visualized in three dimensions where the x- (resp. y-) axis repre-
sents log2CLDN7 (resp. log2VIM/log2CDH1) expression levels.
For each data point, three related outputs provide an estimate of
the probability that a sample has phenotype, E (Eq. D, n ¼ 1),
E/M (Eq. D, n ¼ 2), and M (Eq. D, n ¼ 3; Fig. 2A). Projections of
each probability into the x-y plane reveal the relevant range for

Figure 1.
Schematic illustration of model
construction and prediction. Input
elements relevant to model
construction include NCI-60 training
data (teal boxes), a priori training set
categorization (purple), and a list of
candidate predictors (maroon). Model
construction is used in the leave-one-
out characterization of predictors and
construction of normalizers to predict
categories of EMT-relevant cell lines
and to categorize patient primary
tumor samples for risk stratification
(bottom half).
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which each phenotype resides (Fig. 2B). The representation of
EMT status as the maximal predicted probability state can be
appreciated by projecting Eq. D (n ¼ 1, 2, 3). Overlaying NCI-60
data reveals that a majority of training samples fall within their
expected range (Fig. 2C). A prototypical demonstration of nor-
malization is provided for cell lines composed of CD44þ/CD24$

and CD44$/CD24þ humanmammary epithelial cells (GSE15192;
Fig. 2D). Here, prenormalized (purple) and postnormalized
(pink) samples are plotted alongside NCI-60 training set sam-
ples (black). In this case, normalization provided significant
shift in several mesenchymal samples originally classified as
E/M, and several hybrid E/M samples originally classified as
epithelial. Additional illustrations of normalization are given in
Supplementary Fig. S1.

The model captures known phenotypes for multiple cancer
types in vitro

Our algorithm was able to recapitulate the known phenotypes
for multiple in vitro studies across various cancers. For instance,
ectopic expression of EMT-inducing transcription factor SNAIL in
an epithelial breast cancer cell lineMCF-7 was predicted to drive a
full EMT (GSE58252; Table 5A; ref. 29), and subpopulations of
epithelial prostate cancer cells PC3 exhibiting enhanced transen-
dothelial migration were predicted to be more mesenchymal
(GSE14405). TEM4-18 cells, negative for E-cadherin and display-
ing nuclear staining for ZEB1 (30), were predicted to be mesen-
chymal, whereas TEM2-5, with relatively higher levels of cell-
adhesion molecules as compared with TEM4-18 (30), were pre-
dicted to be hybrid E/M (Table 5A). Similarly, PC-3/Mc cells, a
subpopulation of PC-3 cells that coexpressed CD24 and CD44
(ref. 31; a signature of hybrid E/M; ref. 9), were predicted to be
hybrid E/M, and PC-3/S cells, being enriched in mesenchymal
gene expression (31), were predicted as mesenchymal (Table 5A;
GSE24868). Higher tumor initiation potential and an active self-
renewal program in PC-3/Mc further reinforce the hypothesis that
cells in a hybrid E/M state, instead of those frozen in a mesen-
chymal state, are most likely to be more stem-like (1, 32, 33).
Furthermore,multiple Ewing sarcoma (GSE70826; Table 5A) and
osteosarcoma (GSE70414, GSE55957; Supplementary Table S2)
datasetswere predicted to bemesenchymal, and the epithelial and
mesenchymal subpopulations of HMLE cells (GSE28681; Table
5A) had significantly different EMT scores. The algorithm also
predicts that short-term treatment of cells with EMT or MET
inducers is usually not sufficient to drive a transition (GSE7868,
GSE17708,GSE59771, andGSE53603; Supplementary Table S2).

We also calculated EMT scores for in vivo mouse model of
pancreatic cancer, KPC, both in control cases and when specific
EMT-inducing transcription factors were genetically knocked out
(KO). Tumors from both KPC control mice, and the KO-Twist or
KO-Snail KPCmice (GSE66981; ref. 34) were predicted as hybrid
E/M, but cell lines established from thosewith KO-Zeb1KPCmice
(GSE87472; ref. 35) were categorized as almost purely epithelial

Table 1. Iterative regression output (top 5% of EMT-relevant genes)

Predictor Deviancea

CDH1/VIM 37.61
OVOL2/VIMb 45.96
VIM/CDH1 46.74
TMEM125 49.74
VIM/GRHL2b 50.60
GRHL2b 51.47
GRHL2/VIM 51.50
VIM/OVOL2b 51.85
RAB25 52.12
CLDN7 52.48
BICDL2 53.47
IRF6 53.91
TMC4 54.27
CDH3/VIM 55.75
VIM/OVOL1b 57.12
VIM 57.50
OVOL1/VIMb 57.64
C1ORF210 58.44
MARVELD3 59.07
CDS1 59.34
BSPRY 59.39
CDH1 59.50
ANAX9 59.79

NOTE: Candidate genes are ranked individually by their deviance, and the top 5%
are illustrated to provide a list of the most resolvable EMT genes. Predictors
involving EMT stability factors are identified.
aDeviance, D, as defined in Eq. A.
bSingle predictor sets containing EMT-stability factors OVOL1 or GRHL2.

Table 2. EMT-Normalizer

Normalizer
SLC25A42
SNX13
TAF4B
CDK2
MBNL1
NEURL1B
ANG
PPFIBP1
PACSIN1
LRRTM1
TMEM182
CSMD1
ZNF503-AS2
CCNF
DIRC1
MBTPS2
RNF150
RC3H2
UBE3C

NOTE: Gene products that show the weakest correlation to training set cate-
gories are identified as normalizers, used for cross-data comparison.

Table 3. Top 10 two-predictor combinations

Rank Predictor 1 Predictor 2 Deviancea

1) CLDN7b VIM/CDH1b 26.78
2) VIM/GRHL2 OVOL1/CDH1 27.73
3) VIM/CDH1 VIM/GRHL2 28.27
4) GRHL2 VIM/CDH1 28.31
5) ST3GAL2 VIM/CDH1 28.31
6) VIM/CDH1 GRHL2/CDH1 28.48
7) VIM/CDH1 OVOL2/VIM 28.56
8) GRHL2/CDH1 VIM/GRHL2 28.63
9) VIM/CDH1 GRHL2/VIM 28.86
10) OVOL1 VIM/CDH1 29.08

NOTE: The top 10 optimal predictor combinations are ranked according to their
deviance.
aDeviance, D, as defined in Eq. A.
bTop predictors (X1,X2) used in model construction.

Table 4. Leave-one-out analysis: CLDN7, VIM/CDH1

Category Sensitivity Specificity
E 100% 98%
E/M 55% 90%
M 86% 82%
Diagnostic accuracy: 83%

NOTE: Prognostic outputs of leave-one-out analysis on the top predictor set
{CDH1/VIM, CLDN7} are provided.
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(Table 5C). Furthermore, our algorithm accurately recapitulated
the experimental observation that an EMT was not induced in
epithelial cells from Zeb1-KO mice upon TGF treatment (35).
Together, these results reinforce a key role of Zeb1 in mediating
EMT (27, 36).

Cell lines predicted as hybrid E/M tend to coexpress epithelial
and mesenchymal markers

Next, we ran our model for transcriptomes of multiple cell
lines, including SW480 and SW620 (both colorectal cancer),
DU145 (prostate cancer), and A549, H1975, H460, and H1650
(all non–small cell lung cancer; GSE36821, GSE15392,
GSE10843). SW480, H460, and H1650 were predicted to be
epithelial, whereas H1975, DU145, SW620, and A549 were pre-
dicted to be hybrid E/M (Table 5B). Consistent with their pre-
dicted phenotypes, H1975 cells have been shown to stably coex-
press E-cadherin and vimentin at a single-cell level (12), whereas
H460 and H1650 cells have been previously categorized as
epithelial-like based on proteomic measurements (37).

Tobetter understand thepredicted hybridE/Mcell lines,wefirst
quantified the levels of knownEMTmaster regulators of qRT-PCR.
We also included epithelial MCF-7 cells and mesenchymal 143B

osteosarcoma cells for comparison. Relative to the strongly epi-
thelial MCF-7 cells, the hybrid E/M cell lines consistently
expressed elevated levels of ZEB1 and SNAIL and were more
similar in expression of ZEB1 and SNAIL to the mesenchymal
143B cells (Supplementary Fig. S2A). Interestingly, the SW480
cells, whichwere predicted to be epithelial, also resembled hybrid
cells in their expression of ZEB1 and SNAIL (Supplementary Fig.
S2A). Similarly, the hybrid E/M lines had undetectable levels of
the transcription factor GRHL2, while SW480, predicted to be
epithelial, expressed low levels of GRHL2 compared with MCF-7
(Supplementary Fig. S2B and S2C). E-cadherin levels were also
substantially lower in the hybrid E/M lines and SW480 when
compared with MCF-7 at both the mRNA (Supplementary Fig.
S2B and S2C) and protein (Fig. 3A) levels, with variable levels of
vimentinprotein (Fig. 3A). Together, these results confirm that the
cell lines predicted as hybrid coexpress epithelial and mesenchy-
mal biomarkers at intermediate levels compared with strongly
epithelial or strongly mesenchymal cell lines.

All of the datasets above contain gene expression on an ensem-
ble level instead of single-cell gene expression data. Therefore, a
hybrid E/M signature may be predicted either because they truly
contain hybrid E/M cell coexpressing epithelial andmesenchymal

Figure 2.
Model representation. A, Three-dimensional view of model constructed using top predictors. B, Model viewed from overhead representing various regions of
predictor space that define E, E/M, and M categories. C, Two-dimensional model projection of model for use in defining the EMT metric, m, described by Eq. E.
D, Prototypical example of pre- versus postnormalization comparisons in an immortalized human mammary epithelial cell line (GSE15192).
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markers (as shown for H1975), or because they are comprised of
subpopulations of epithelial and mesenchymal phenotypes. To
further investigate these cell lines at a quantitative and single-cell
level, we performed two-color flow cytometry for DU145, A549,
SW620, and SW480 cells, which were predicted to be epithelial, but
coexpressed CDH1 and VIM. We also included MCF-7 cells as a
control for cellspredicted tobeepithelial.While theMCF-7 cellswere
86%–98% CDH1high/VIMlow, all other lines had three distinct
subpopulations of epithelial-like (CDH1high/VIMlow), hybrid E/M
(CDH1high/VIMhigh), and mesenchymal-like (CDH1low/VIMhigh)
cells (Fig. 3B–D). An experimental quantification of each sample's
EMT score, uexp, was estimated by weighting the given categorical
scores (E¼0, E/M¼1, M¼2) by the observed proportion of
E-cadherin and vimentin expressed: uexp ¼ 0-[%CDH1þ/VIM$

cells]þ1-[%CDH1þ/VIMþcells]þ2-[%CDH1$/VIMþcells]. This
was compared with theoretical predictions of EMT scores
using Eq. E (Fig. 3C; Supplementary Fig. S3). We then used two-
color staining for CDH1 and VIM on the ImageStream, which
combinesflow cytometrywith single-cell imaging.Using this instru-
ment, we were able to clearly identify three distinct subpopulations

of cells in all four cell linesDU145,A549, SW480, SW620, including
CDH1high/VIMlow, CDH1high/VIMhigh, and CDH1low/VIMhigh (Fig.
3E). These results not only highlight the extent of phenotypic
heterogeneity in the cell lines studied above, but also offer a
potential reason forwhy SW480 cellswere predicted tobe epithelial;
in cell lines that are admixtures of different phenotypes, a context-
dependent enrichment of one phenotype is unsurprising.

Next, we performed immunofluorescence staining for
CDH1 and VIM in A549, DU145, SW620, and SW480 cells.
Consistent with the predictions of the model, DU145 cells
expressed clear costaining of membrane-localized CDH1 and
VIM in numerous cells (Fig. 4A). On the other hand, A549 cells
were predominantly CDH1-low and VIM-positive, with distinct
clusters of CDH1þ/VIM$ cells (Fig. 4B). Like the DU145 cells,
SW480 cells also contained a population of cells with coexpres-
sionofCDH1andVIM(Fig. 4C); however, a subset of SW480 cells
possessed CDH1þ/VIM$ cell clusters (Fig. 4C). The SW620s
displayed a patchier distribution of membrane CDH1 positivity
and strong VIM expression, with a small subpopulation of cells
that coexpress CDH1 and VIM (Fig. 4D).

Figure 3.
Western blot, ImageStream, and flow cytometry analysis of epithelial-like, hybrid, and mesenchymal-like cells. A, Western blot analysis of CDH1 and VIM
reveals cell lines predicted to be hybrid E/M display coexpression of CDH1 and VIM. MCF-7 and 143B are included as known epithelial and mesenchymal lines,
respectively. B, Quantification of relative proportions of epithelial-like, hybrid, and mesenchymal-like cells in DU145, A549, SW480, and SW620 cells compared
with epithelial MCF-7 cells for the data presented in D. C, Comparison of experimentally observed EMT score for DU145, A549, SW480, and SW620 cells
(mexp) and theoretical prediction of EMT score via Eq. E (mpred). D, Flow cytometry analysis of CDH1high/VIMlow (green), CDH1high/VIMhigh (gray), and CDH1low/VIMhigh

(magenta) subpopulations. E, ImageStream analysis using two-color staining of E-cadherin and vimentin reveals the presence of distinct subpopulations of
epithelial-like, hybrid, and mesenchymal-like cells in DU145, A549, SW480, and SW620 cells.
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Together, our quantitative analysis at the single-cell level
revealed that the cell lines predicted to be hybrid can contain
subsets of epithelial-like, hybrid E/M, and mesenchymal-
like cells.

Association between EMT status and survival is tissue and
subtype specific

Kaplan–Meier survival analysis reveals statistically significant
(P < 0:05 at significance level a ¼ 0:05) differences between
epithelial and nonepithelial signatures for multiple breast cancer
datasets. In a majority of cases (Fig. 5A–E), patients exhibiting a
more epithelial phenotype had poorer survival as compared with
those displaying a partial or full EMT signature (GSE17705,
GSE1456,GSE45255,GSE5327,GSE6532). Although statistically
significant, some of these cases—especially Fig. 5A (HR ¼
0.760), Fig. 5B (HR ¼ 0.614), and Fig. 5E (HR ¼ 0.625)—do
not show dramatic separation in clinical parameters. However,
in a cohort with a larger percentage of basal-like breast cancer,
patients with a hybrid E/M phenotype demonstrate significant
reductions in disease-free survival when compared with patients
with an epithelial signature (Fig. 5F). This result is consistent
with independent attempts at describing subtype-specific differ-
ences in correlations between EMT status and survival in which
the authors described a scenario wherein the epithelial pheno-
type was prognostic for worse survival in some cancer types and
better survival in others (38). Therefore, a higher EMT score need
not always correlate with poor survival, at least in multiple
subtypes of breast cancer. Such a correlation may also be con-
founded by heterogeneous factors such as molecular subtype
(ERþ samples in GSE17705 and ER$ samples in GSE1456 and
GSE5327) and varied prior therapy regimens (tamoxifen treat-
ment for patients in GSE17705, GSE1456, and GSE6532, and
neoadjuvant taxane–anthracycline chemotherapy for patients in
GSE25066) that may alter cell EMT status (39).

In lung cancer (GSE31210), patients categorized as hybrid E/M
phenotype had significantly lower relapse-free (HR¼ 1.942) and
overall survival (HR¼ 1.391) as compared with those binned for
epithelial phenotype, with a relatively wider separation in clinical
parameters (Fig. 5G and H). Ovarian cancer patient datasets for
which there were statistically significant differences in overall
survival revealed mixed results. In one case (GSE63885), hybrid
E/M samples demonstrated improved overall survival, while in
another (GSE26712), hybrid E/M signatures were significantly
more aggressive (Fig. 5I and J). These differences in ovarian cancer
may possibly be the result of different therapy regimens. No
treatment information could be found for patients in GSE26712,
while GSE63885 represents a collection of patients post-first-line
chemotherapy.

To assess the significance of the role of CLDN7 in this EMT-
survival association, we plotted Kaplan–Meier curves for the same
datasetsmentioned above for two cases: (i) usingmedian levels of
CDH1/VIM to resolve patients into two groups, CDH1/VIMhigh

and CDH1/VIMlow (Supplementary Fig. S4), and, (ii) using
CDH1 and VIM as the two predictors in our statistical model
(Supplementary Fig. S5). In either case, the significant corre-
lation observed by using CDH1/VIM and CLDN7 as the pre-
dictors was lost in 8 or more of 10 cases evaluated. This
difference reinforces our earlier analysis that (CDH1/VIM,
CLDN7) predictor set can resolve the multidimensional gene
expression landscape onto an EMT axis much more accurately
than (CDH1/VIM) or (CDH1, VIM).

EMT spectrum for TCGA datasets
Next, we ran our model on multiple TCGA datasets (40–46)

and observed a wide spectrum of EMT states for multiple
cancer types. Breast and lung cancer samples displayed an
epithelial phenotype predominantly, and most sarcoma samples
were categorized as mesenchymal. Notably, pancreatic

Figure 4.
Validation of the hybrid E/M state
reveals distinct subpopulations of
epithelial-like, hybrid, and
mesenchymal-like cells. A, DU145 cell
line contains cells that coexpress
membrane CDH1 and VIM. B, A549 cells
predicted to be hybrid E/M contain
subpopulations of CDH1high/VIMlow and
CDH1low/VIMhigh cells, along with cells
that coexpress both CDH1 and VIM. C,
SW480 cells, predicted to be epithelial,
have all three subpopulations of cell
types. D, SW620 cells are comprised
predominantly of CDH1low/VIMhigh

cells, with nests of cells that display
upregulated CDH1 and reduced levels
of VIM.
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adenocarcinoma (PDAC) and renal clear cell carcinoma (RCC)
samples were enriched for a hybrid E/M phenotype (Supplemen-
tary Fig. S6A), reminiscent of coexpression of epithelial and
mesenchymal markers in vivo in PDAC and in vitro in RCC cell
lines (1). Finally, we investigated the correlation of EMT scores
with metastatic potential in these TCGA datasets. Breast cancer
samples that exhibited metastasis were either categorized as
epithelial or hybrid E/M (Supplementary Fig. S6B), reinforcing
the concept that a complete EMT need not occur for metastatic
dissemination (47).

Discussion
We have applied iterated regression trained on the NCI-60

dataset to create an inferential statistical model of the EMT
spectrum. Our model relates gene expression patterns for a small
collection of EMT-relevant transcripts to the proclivity of a sample
for one of three categories—E, hybrid E/M, and M. Advantages of
this approach include an explicit quantitative description of the
intermediate, hybrid E/M state, as well as a simple and relatively
affordable diagnostic tool that may be used in assessing the EMT
status of human tissue samples. Characterizing the hybrid E/M
phenotype(s) is a crucial step toward addressing recent contro-
versies in the literature. In particular, several recent studies have
questioned the indispensable role of at least a complete EMT and
MET in metastatic progression (34, 47, 48). This model is there-
fore valuable in investigating systematically the role of hybrid E/M
phenotype(s) in themetastatic cascade and can help us appreciate
a more nuanced view of cellular plasticity.

Working within our computational limits, we find that CLDN7
and VIM/CDH1 constitute the best pair of predictors to fit the
NCI-60 training set, and maintain predictive value in in catego-

rizing the NCI-60 cell lines via leave-one-out analysis. CDH1 and
VIM are canonical markers of epithelial and mesenchymal states
respectively, whereas CLDN7 (claudin 7) may be crucial in
maintaining the hybrid E/M phenotype. This proposed role of
CLDN7 is based on observations made for other "phenotypic
stability factors" for a hybrid E/M phenotype such as GRHL2 and
OVOL2 (12, 13, 24, 25). Therefore, our model identifies repre-
sentative features from E, hybrid E/M, and M phenotypes, and is
therefore able to recapitulate the observed role of drivers aswell as
fine-tuners of cellular plasticity.

The identification of CDH1/VIM as one of the two elements
constituting the top predictor set may appear as "circular reason-
ing," but as highlighted both via agreement to training data and
patient survival data, having CLDN7 as another member in the
top predictor set enables a much better resolution of the expres-
sion signature landscape on EMT axis. We validated our approach
by comparing model predictions against samples whose pheno-
types are known a priori, both across tissue types and across
different experimental conditions such as isogenic subpopula-
tions and treatment with EMT-inducing signals for different
durations. We also predicted a hybrid E/M status of multiple cell
lines and later validated that they may contain either subpopula-
tions of epithelial and mesenchymal cells (A549) or cells coex-
pressing epithelial and mesenchymal markers (DU145). When
applying our model to TCGA datasets, we similarly observed a
wide distribution of phenotypes in multiple cancer types. Partic-
ularly, renal cell carcinoma and PDAC samples were predomi-
nantly predicted to be hybrid E/M, but these observations are
inconclusive on whether these samples contain hybrid E/M cells.
Future studies focusing on single-cell gene expression analysiswill
be fundamental to dissect cellular heterogeneity and investigate
underlying reasons for high aggressiveness of a hybrid E/M

Figure 5.
Correlation between EMT status and clinical survival metrics. Kaplan–Meier survival analysis is performed to compare statistically assess differences in survival
and tumor aggressiveness between tumors predicted to be E, E/M, and M. This was performed for a variety of breast cancer (A–F), lung (G), and ovarian (H)
primary tumor samples with HRs and 95% confidence intervals: A, HR ¼ 0.760 95% CI, 0.593–0.974; B, HR ¼ 0.614 95% CI, 0.593–0.974; C, HR ¼ 0.408
with 95%CI, 0.219–0.761;D,HR¼0.667with 95%CI, 0.466–0.955;E,HR¼0.625with 95%CI, 0.402–0.971;F,HR¼0.818with 95%CI, 0.673–0.995;G,HR¼ 1.942with
95% CI, 1.472–2.561; H, HR ¼ 1.391 with 95% CI, 1.066–1.815; I, HR ¼ 0.590 with 95% CI, 0.363–0.959; J, HR ¼ 1.736 with 95% CI, 1.088–2.771.
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phenotype, due to cooperating epithelial or mesenchymal sub-
populations and/or enhanced drug resistance of "double posi-
tive" cells coexpressing epithelial and mesenchymal markers (1).

Whilemultiple previous studies have associated EMTwith poor
survival (16, 17, 49), our results are consistent with prior observa-
tions (38) and suggest that such correlation can be highly tissue-
and subtype-specific, even after normalizing the data tominimize
the effect of external factors such as platform-specific variations.
Of particular interest is the observation that breast cancer patients
with lower EMT scores had better overall and progression-free
survival, exceptwhen investigating a dataset enriched in basal-like
breast cancer. These apparent contradictions may result from a
combination of factors such as different therapeutic treatments
driving phenotypic transitions (39, 50), and methods of gener-
ating EMT-specific signature used to classify patients for survival
analysis (9). Prior work has relied on inferring characteristics of
the intermediate E/Mphenotype by interpolating between known
behavior for E andM states (9, 38). In contrast to other large gene
expression analyses that correlate EMTwith survival, ourmodel is
trained directly on known hybrid E/M samples in addition to E
andM.Moreover, it provides a continuous, explicit quantification
of all three regimes on the EMT spectrum. This allows for a
quantification of the aggregate signature at the population level,
as well as a probabilistic interpretation of EMT category on the
single-cell level.

In conclusion, we develop an algorithm to quantify the extent
of EMT, independent of cancer type that can be used to system-
atically investigate the role of intermediate or hybrid epithelial/
mesenchymal phenotype(s) in multiple hallmarks of tumor pro-
gression, such as invasion andmetastasis, angiogenesis, resistance
to apoptosis, and resistance to multiple therapies. This metric,
based on gene expression, has the potential to be integrated with
proteomics and metabolomics data among others, and offers an
EMT score that can objectively characterize the EMT status of both

in vitro samples as well as in vivo xenografted tissue and patient
tissue samples.
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Supplementary Figures and Tables

Model Performance vs. Random Models

{CDH1/VIM, CLDN7} 10^6 Random Models (mean ± s.d.)

Deviance 26.78 90.55 ± 14.75

Model Predictions vs. 3-Combination Model Prediction

Category Sensitivity Specificity

E 95.45 ± 14.37% 99.57 ± 0.85%

E/M 63.82 ± 11.05% 91.92 ± 2.54%

M 90.24 ± 3.35% 82.75 ± 5.08%

Diagnostic Accuracy: 86.6 ± 3.22%

A

B

�1

Table S1: {CDH1/VIM, CLDN7} vs. Other Models.

(A) The goodness of fit for the {CDH1/VIM,CLDN7} model is compared to the mean ± s.d. for that

of 106 randomly generated models. Better fit is reflected in lower deviance values, indicating significant

improvements by using the generated model; (B) Mean and standard deviation values for sensitivity and

specificity are provided for models that include an additional (third) best predictor in combination with the

best pair for the top 50-combination predictors. There is no statistically significant difference between any

of the categories and the top 2-combination predictor selected for analysis, and so for simplicity and to avoid

over-fitting, we proceed to characterize EMT using the model built on CLDN7 and VIM/CDH1.
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Figure S2

A B C

D E F

Figure S1: Additional examples of normalization.

Further examples of normalization are provided for (A) MCF10A and transformed MCF10ATk.cl2 and

MCF10CA1h mammary epithelial cell lines (GSE18070); (B) Type I K5+/K19- and Type II K5+/K19+

immortalized human mammary epithelial cells (GSE22580); (C) Normal and malignant CD44+/CD24-

and CD44-/CD24+ breast epithelial MCF-10A cells (GSE15192); (D) Core biopsies of primary human

CD44+/CD24-, CD24+, and CD44-/CD24+ breast tumors (GSE7513); (E) MCF-10A CD44+/CD24- and

CD44-/CD24+ breast epithelial cell lines (GSE15192), and; (F) CD44+/CD24- tumorigenic breast-cancer

cells and normal breast epithelium.
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Additional EMT Score Calculations
GEO 

Dataset Sample description Observed 
phenotype

Predicted 
EMT score EMT Spectrum

GSE 70414 MG63 Mesenchymal 2.000
Saos Mesenchymal 2.000
HOS Mesenchymal 2.000
NY Mesenchymal 2.000

Hu09 Mesenchymal 2.000
hMSC Mesenchymal 2.000

GSE 55957 ZOS osteosarcoma Mesenchymal 1.685
ZOSM osteosarcoma Mesenchymal 1.841

GSE 7868 LNCaP expression at 0 hr (n=3) Epithelial 0.014 ± 0.005
LNCaP expression at 4 hr (n=3) Epithelial 0.016 ± 0.002
LNCaP expression at 16 hr (n=3) Epithelial 0.014 ± 0.002

GSE 17708 A549 untreated (n=3) Hybrid E/M 0.955 ± 0.002
A549 TGFB1 0.5 hr (n=3) Hybrid E/M 0.958 ± 0.004
A549 TGFB1 1 hr (n=3) Hybrid E/M 0.956 ± 0.002
A549 TGFB1 2 hr (n=2) Hybrid E/M 0.954 ± 0.003
A549 TGFB1 4 hr (n=3) Hybrid E/M 0.957 ± 0.003
A549 TGFB1 8 hr (n=3) Hybrid E/M 0.961 ± 0.002
A549 TGFB1 16 hr (n=3) Hybrid E/M 1.040 ± 0.002
A549 TGFB1 24 hr (n=3) Hybrid E/M 1.046 ± 0.004
A549 TGFB1 72 hr (n=3) Hybrid E/M 1.049 ± 0.006

GSE 59771 LSTGFBR2-Ctrl (n=2) Epithelial 0.019 ± 0.002
LSTGFBR2-Ctrl (n=2) Epithelial 0.017 ± 0.002

GSE 53603 Vehicle 6 hr (n=2) Hybrid E/M 0.886 ± 0.057
SAHA 6 hr (n=2) Hybrid E/M 0.865 ± 0.035

GSE 53603 Vehicle 24 hr (n=3) Hybrid E/M 0.717 ± 0.042
SAHA 24 hr (n=2) Hybrid E/M 0.935 ± 0.008

E E/M M
0 21

*
*

*

*

*

*

*
*

*
*
*
*
*
*

*
*

*
*
*
*
*
*
*
*

*

*

Table S2: Additional EMT score categorization.

Model predictions on datasets across multiple cancer types: GSE70414-osteosarcoma and GSE 55957-

osteosarcoma cell lines, GSE7868-LNCaP cells treated with DHT for 0, 4, 16 hr, GSE17708-time-course

TGFb treatment of A549 for 0, 0.5, 1, 2, 4, 8, 16, 24, and 72 h, GSE59771-CRC cell line LS174T with re-
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stored TGFBR2 expression (LS) treated with TGFB for 16 hr, GSE53603-SKOV3 cells treated with vehicle

or SAHA. Observed phenotype denotes the a priori known EMT status (red for E, green for hybrid E/M

and blue for M), and the EMT spectrum plots a sample’s EMT score, µ, as defined in Equation 5 (µ < 0.5

corresponds to E, 0.5 < µ < 1.5 corresponds to E/M, and µ > 1.5 corresponds to M).
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Figure S4
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Figure S2: Levels of canonical epithelial and mesenchymal markers in multiple cell lines.

(A) RT-qPCR of EMT transcription factors Snail, Slug, Zeb1, and Twist indicate that cell lines predicted

to be hybrid express higher levels of Zeb1 and Snail than the strongly epithelial cell line, MCF-7. 143B

cells are included as a mesenchymal cell line control; (B) All hybrid lines have no detectable GRHL2, while

the SW480 cells, predicted to be epithelial express a relatively low level of GRHL2 compared to epithelial

MCF-7 cells; (C) E-cadherin is downregulated in hybrid E/M lines compared to epithelial MCF-7 cells.

6



Experiment 1 Experiment 2
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A B Exp. 2 µexp µpred 
MCF7 0.225 0.185

DU145 1.019 0.951

A549 1.900 1.083

SW480 1.234 0.015

SW620 0.172 1.268

Figure S3: Flow cytometric quantification of epithelial-like, hybrid, and mesenchymal-like

cells.

(A) Second experimental quantification of relative proportions of epithelial-like, hybrid, and mesenchymal-

like cells in DU145, A549, SW480, and SW620 cells compared to epithelial MCF-7 cells (Figure 3); (B)

Comparison of experimentally-observed EMT score for DU145, A549, SW480, and SW620 cells (µexp) and

theoretical prediction of EMT score via Equation 5 (µpred).
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Figure S4: Survival Analysis distinguishing groups via median CDH1/VIM.

Kaplan-Meier survival analysis for the same datasets shown in Figure 5, but when patients are categorized

into VIM/CDH1low or VIM/CDH1high classes based on median expression instead of being categorized

via the statistical model using {CDH1/VIM, CLDN7} as the predictor set. This was performed for a

variety of breast cancer (A-F), lung (G), and ovarian (H) primary tumor samples with Hazard Ratios and

95% confidence intervals: (A) HR=0.997 95%CI=(0.792, 1.255); (B) HR=1.561 95%CI=(1.129, 2.160); (C)

HR=0.925 with 95%CI=(0.549, 1.560); (D) HR=1.205 with 95%CI=(0.855, 1.697); (E) HR=1.349 with

95%CI=(0.874, 2.084); (F) HR=0.782 with 95%CI=(0.656, 0.933); (G) HR=0.860 with 95%CI=(0.659,

1.122); (H) HR=0.895 with 95%CI=(0.687, 1.166); (I) HR=0.776 with 95%CI=(0.491, 1.228); (J) HR=0.889

with 95%CI=(0.663, 1.193).
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Figure S5: Survival Analysis for model using only {CDH1, VIM} as predictors.

Kaplan-Meier survival analysis for the same datasets shown in Figure 5, but when patients are categorized

into E, E/M, M using CDH1, VIM as the predictor set in our statistical model instead of using CDH1/VIM,

CLDN7 as shown in Figure 5. This was performed for a variety of breast cancer (A-F), lung (G), and ovarian

(H) primary tumor samples with Hazard Ratios and 95% confidence intervals: (A) E vs. E/M - HR=1.181

95%CI=(0.576, 2.421), E/M vs. M - HR=1.764 with 95%CI=(0.997, 3.123), E vs. M - HR=1.793 with

95%CI=(0.598, 5.373); (B) E vs. E/M - HR=1.865 with 95%CI=(0.711, 4.893), E/M vs. M - HR=0.812

with 95%CI=(0.094, 7.124), E vs. M - HR=1.935 with 95%CI=(0.335, 11.180); (C) E vs. E/M - HR=0.508

with 95%CI=(0.224, 1.154), E/M vs. M - HR=1.994 with 95%CI=(0.585, 6.802), E vs. M - HR=0.362

with 95%CI=(0.017, 7.723); (D) HR=0.474 with 95%CI=(0.158, 1.423); (E) HR=1.671 with 95%CI=(0.828

,3.373); (F) E vs. E/M - HR=0.795 with 95%CI=(0.635, 0.995), E/M vs. M - HR=0.672 with 95%CI=(0.397,

1.137), E vs. M - HR=0.449 with 95%CI=(0.242, 0.832); (G) HR=0.566 with 95%CI=(0.328, 0.977); (H)

HR=0.609 with 95%CI=(0.345, 1.078); (I) HR=1.047 with 95%CI=(0.445, 2.460); (J) E vs. E/M - HR=0.957

with 95%CI=(0.668, 1.371), E/M vs. M - HR=1.096 with 95%CI=(0.422, 2.845), E vs. M - HR=1.030 with

95%CI=(0.368, 2.885).

11



A

B

Figure S6: EMT spectrum distributions for large datasets.

(A) Distributions of EMT score for samples in multiple TCGA datasets belonging to different cancer types;

(B) Spectrum of EMT score distributions for segregated metastatic and non-metastatic TCGA breast cancer

samples.
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